

A report on Seismic Hazard Microzonation of NCT Delhi on 1:10,000 scale

National Center for Seismology Ministry of Earth Sciences Government of India 2016

A report on Seismic Microzonation of NCT Delhi on 1:10,000 scale

Table of Contents

S.N.	ITEM				PAGE No.
	Forev	vord			
	Ехеси	tive Summary			
	Prefa				
		owledgement			
		ory and Monitoring Com			
		tist of EREC and Collabor			
1.0	CHA	PIER-I: INTRODUCTI	ION (SEISMI	C HAZARD MICROZONATION OF NCT DELHI)	1-5
2.0				CITY AND HYDROLOGY OF THE AREA	6-24
	2.1	Review of Geology of	•		6
	2.2	Review of Major Tect			8
	2.3	Review of Seismicity	•		12
	2.4	2.3.1		nicity around Delhi and Spatial Distribution	16 21
	2.4	Review of hydrology of 2.4.1 District wise		situation in NCT Delhi	21
		2.4.1 District wise	inyuroiogicai	situation in NC1 Denn	22
		2.4.1.1		Central District	22
		2.4.1.2		North District	22
		2.4.1.3		East Delhi District	22
		2.4.1.4		New Delhi District	22
		2.4.1.5		North-East District	23
		2.4.1.6		North-West District	24
		2.4.1.7		South District	24
		2.4.1.8		South-West District	24
		2.4.1.9		West District	24
3.0				EISMIC HAZARD MICROZONATION	25-27
4.0				APS AND GEOLOGICAL MAPPING OF NCT DELHI	28-40
	4.1	Base Maps (Toposhee	ets)		28
	4.2	Seismotectonic Atlas			28
	4.3	Bedrock Depth Map	nt tonograph	u of NCT Dolbi	29 29
			ent topograph	y of NCT Delhi	
		4.3.1.1 4.3.1.2		Bedrock depth in Central district	30 30
		4.3.1.3		Bedrock depth in North district	31
		4.3.1.4		Bedrock depth in East district Bedrock depth in New Delhi district	31
		4.3.1.5		Bedrock depth in North-East district	31
		4.3.1.6		Bedrock depth in North-West district	31
		4.3.1.7		Bedrock depth in North-west district	32
		4.3.1.8		Bedrock depth in South-West District	32
		4.3.1.9		West District	32 32
		4.4	Ground Wate	r table Map	33
		4.4.1	-	ter level in May 2010 (Pre Manson)	
			4.4.1.1	Annual Fluctuation of water level in May	33
			4.4.1.2	Decadal Fluctuation of water level in May	33
		4.4.2	Depth to wa	ater level in November 2010	34
			4.4.2.1	Pre-Post Monsoon Fluctuation of water level	34
			4.4.2.2	Annual Fluctuation of post monsoon water level	34

	4.5		Geological and Geomorphological Mapp	ing	34
		4.5.1	nterpretation of geology and geomorph	nology of Delhi based on new maps	38
5.0	CHAP	TER-5: SEISMIC HAZARD	SSESSMENT OF NCT DELHI AT ENGINEE	RING BEDROCK	41-75
	5.1	Estimation of Seismic H	azard Parameter		42
		5.1.1	Earthquake data (Catalogue)		42
		5.1.2	Seismotectonic Modeling		43
			5.1.2.1 Seismic So	urce Zones	43
			5.1.2.1.1 Seismog	enic Zone I: Himalayan Zone (HIM)	44
			5.1.2.1.2 Seismog	enic Zone II: Delhi Haridwar Ridge Zone (DHR)	45
			5. 1.2.1.3 Seismog	enic Zone III: Moradabad Fault Zone (MOR)	45
			5.1.2.1.4 Seismog (RGBF)	enic Zone IV: Rajasthan Great Boundary Fault Zone	46
			5.1.2.2 Line and	Area Source Models	46
		5.1.3	Homogenization of Earthquake Catalo	gue	47
		5.1.4	Declustering of the Catalogue		52
		5.1.5	Completeness Analysis of Seismic Dat	a	53
		5.1.6	Estimation of a, b and M _c		54
		5.1.7	Estimation of M _{max}		56
	5.2	Ground Motion Predic	on Equations		60
	5.3	Seismic Hazard Assessi	ent of NCT Delhi		61
		5.3.1	Formulation of Logic Tree		61
		5.3.2	Estimation of Strong Ground Motion f	or NCT Delhi	62
	5.4	Uniform Hazard Respo	se Spectrum (UHRS)		64
	5.5	Free Surface Correction			66
	5.6	Generation of Spectru	Compatible Ground Motion Time Histo	pries	69
		5.6.1	Time Domain Generation		70
	5.7	Peak Ground Accelera histories.	ion (PGA) at engineering bedrock after	free surface correction derived from generated time	73
6.0	CHAI		eophysical Data generation and Soil Cha	racterization	75-102
	6.1	Optimization of number	of sites for geotechnical/ geophysical i	nvestigations	75
	6.2	Data generation			77
	0.2	6.2.1	Geotechnical investigations		77
		6.2.2	Geophysical investigations		78
	6.3	Soil Characteristics in	elhi		79
		6.3.1	Distribution of Soil Types		81
		6.3.2	Cross Sections		81
	6.4	Evaluation of corrected			89
		6.4.1	SPT 'N' value distribution		90
	6.5	Development of local velocity using CHT/DI		T 'N' Value $(N_1)_{60}$ and Measured in-situ shear wave	91
		6.5.1	Correlation between the <i>Vs</i> (<i>DHT</i>) to SM-SC):	Corrected 'N' values $(N1)_{60}$ for Sand (SP-SM, SP, and	92
		6.5.2	Correlation between Vs (DHT) to Corr	rected 'N' values (N1)60 For Silt (Ml, ML)	94
		6.5.3	Correlation between Vs (DHT) to Corr	ected 'N' values (N1) ₆₀ For Clay (CL, CL-ML):	95
		6.5.4		rected 'N' values $(N1)_{60}$ For all types of Soil SM, ML,	96
		6.5.5	Correlation between Vs (CHT) to the SM-SC)	e corrected 'N' values (N1) $_{60}$ For Sand: (SP-SM, SP,	97
		6.5.6	Final empirical relations obtained and	used for NCT Delhi	99

		6.5.7		n of shear wave and other stand	e velocity evaluated from newly developed empirical relations for ard relations:	100
7.0	СНАР	TER-7: SITE CLASSIFICA	TION OF NCT DE	LHI BASED ON	SHEAR WAVE VELOCITY	103-
	7.1	Evaluation of Shear	Wave velocity (V	(s^{30})		114 103
	/.1	7.1.1		,	action from Seismic Cross-Hole Test (CHT)	103
		7.1.2			ation from Seismic Down-hole and Up-hole Test (DHT)	105
		7.1.3		•	ation using Multichannel Analysis of Surface Waves (MASW)	105
		71210	7.1.3.1	•	shareware velocity, from MASW Data at 10 representative sites	106
				7.1.3.1.1	Shear wave velocity profile at Akshar Dham Site:	106
				7.1.3.1.2	Shear wave velocity profile at Jawaharlal Nehru University (JNU) and Asola sites	107
				7.1.3.1.3	Shear wave velocity profile at Suhalpur site and Jasola sites:	108
			7.1.3.2	Results fro	m MASW Data collected at 100 sites in collaboration with IIT Roorkee	109
		7.1.4		velocity deriv	ed from empirical equations using SPT N-values obtained during samples:	109
	7.2	Result and discussion	ns			112
		7.2.1	Site classifi	cation map		113
	7.3	Ambiguity in site cla	ssification			113
8	CHA	PTER-8: Site response	study (Part-A):Ev	valuation of Pea	ak Frequency and Peak Amplification	115- 124
	8.1	Field work/Data Acq	uisition			116
	8.2	Analysis of Data				116
	8.3	Result and Discussio	ons			118
		8.3.1	Peak Ampli	fication factor	(A ₀)	119
		8.3.2	Peak Freque	ency (f_0)		120
	8.4	Evaluation of Peak bedrock using numer		corresponding 1	Peak Amplification factor for the soil column above engineering	122
	8.5	Validation of Peak F Numerical technique		eak amplification	n factor obtained from experimental study based on H/V ratio and	122
9		PTER-9: SITE RESPO ra at surface	NSE STUDY (PART-B): Eva	luation of site specific ground motion parameters and Response	125- 150
	9.1	Ground response and	alysis of NCT De	lhi based on Nu	umerical modeling	126
		9.1.1	Input requir	red for ground r	esponse analysis:	127
			9.1.1.1		Time history (input motion)	127
			9.1.1.2		Index and dynamic properties of Soil	127
			9.1.1.3		Shear modulus reduction curves and damping curves	128
			9.1.1.4		Delineation of engineering bedrock and Soil Modeling	130

		9.1.1.5	Water table		134
	9.2	Products from Gr	ound Response stud	у	134
		9.2.1	Peak Ground	Acceleration at Surface:	135
			9.2.1.1	Peak Ground Acceleration Maps at surface	137
			9.2.1.2	Results and discussion on Peak Ground Acceleration at surface based on MCE	137
			9.2.1.3	Uncertainty in results of Peak Ground Acceleration at surface based on MCE:	138
			9.2.1.4	Results and discussion on Peak Ground Acceleration at surface based on DBE	139
			9.2.1.5	Uncertainty in results of Peak Ground Acceleration at surface based on DBE.	140
		9.2.2	Site Amplifica	tion factor:	140
		9.2.3	Response spec	tra:	142
			9.2.3.1	Acceleration Response Spectra for different sites of NCT Delhi:	143
			9.2.3.2	Classification of response spectra obtained for NCT Delhi:	144
		9.2.4	exceedance in	rd Map for different period of spectral acceleration with (i) 2% probability of 50 years for 5 % damping (based on MCE) (ii) 10% probability of exceedance in % damping (based on DBG)	147
		9.2.5	Variation of P	eak Ground Acceleration Soil response with depth	147
		9.2.6	Multiplying	Factors for obtaining PGA values for other damping	149
	9.3		Design respon	se spectra	150
10	CHAP	TER-10: LIQUE	FACTION STUDY	IN NCT, DELHI	151- 169
	10.1	Identification of	f liquefaction suscer	otibility (Level A Study)	152
		10.1.1		ased on Geological Criteria	152
		10.1.2		ased on Compositional Criteria (Index properties of Soil)	153
		10.1.3		epth of Ground water table	155
	10.2	Evaluation of li	quefaction potentia	(Level B studies)	156
		10.2.1	Evaluatio	on Cyclic Stress Ratio (CSR)	157
			10.2.1.1	Evaluation of stress reduction coefficient 'rd'	158
			10.2.1.2	Evaluation of Magnitude Scaling Factor (MSF)	160
			10.2.1.3	Evaluation of total and effective vertical stresses	162
		10.2.2	Evaluati	on Cyclic Resistance Ratio (CRR)	162
		10.2.3	Evaluati	on of Factor of Safety	165
	10.3	Result and disc	ussion		166
11	CHAP	TER-11: INTEGR	ATION OF SEISMI	C HAZARD MICROZONATION MAPS ON GIS PLATFORM	169- 175
	11.1	GIS Integration	logic		169
	11.2	-	eismic Hazard Map	s of NCT Delhi	171
	11.3	Results	1		174
12.0		TER-12: OUANT	IFICATION OF I	JNCERTAINTIES AND VALIDATION OF DIFFERENT PARAMETERS,	176-
		ELS, AND RESUL			187

	12.1 Uncertainty in Peak Ground Acceleration at Surface				
		12.1.1	Uncertainty in evaluation of Uniform Hazard Response Spectra	178	
		12.1.2	Uncertainty in selection of different model parameters for generation of synthetic time history.	179	
	12.2	Uncertainty in	Geotechnical investigation practice	181	
	12.3	Uncertainty in	empirical relations for the evaluation of Shear Wave velocity	181	
	12.4	Uncertainty in	delineation of engineering bedrock and validation of soil model	181	
	12.5	Uncertainty in	material properties	182	
	12.6	Uncertainty in	using heterogeneous techniques	183	
	12.7		defining boundaries of micro- zones	183	
	12.8	•	considering Peak Frequency and Peak amplification	183	
	12.9		Maximum magnitude assessed through Probabilistic Seismic Hazard Analysis	184	
	12.10	I	f Response spectra with actual earthquake	185	
13.0	SEIS		ESTED IMPLICATION OF DIFFERENT PARAMETERS DERIVED FROM THE STUDY OF MICROZONATION OF NCT DELHI, FOR DESIGNING BUILDING CODES AND LAND USE DELHI	188- 195	
	13.1	Implication of Se	eismic Hazard Microzonation parameters in design of building codes	188	
		13.1.1	Implication of Peak Ground Acceleration at Surface viz-a-viz Review of Seismic Zone for NCT	188	
		13.1.2	Delhi Implication of Response Spectra and derived Parameters vis-a-viz evaluation of Horizontal Seismic coefficient ' A_h '	190	
		13.1.3	Implication of Soil Amplification	192	
		13.1.4	Implication of Peak frequency and Peak amplification	192	
		13.1.5	Implication of PGA values at different depths below ground level	193	
		13.1.6	Implication of Liquefaction maps	194	
	13.2		eismic Hazard Microzonation parameters in land use planning	194	
14.0			IC HAZARD PARAMETERS OF IMPORTANT STRUCTURES OF NCT DELHI	196- 201 202-	
15.0	СНАР	TER-15: SUMMA	ARY AND CONCLUSIONS	202-	
	15.1		Probabilistic Seismic Hazard Analysis	203	
	15.2		Soil Characteristics in Delhi	206	
	15.3		Site characterization	207	
	15.4		Site response study (Evaluation of Peak frequency and Peak amplification of soil above bedrock)	207	
	15.5		Site response study (evaluation of site specific ground motion parameters and response spectra at surface)	209	
	15.6		Liquefaction susceptibility	213	
	15.7		Integration of seismic hazard maps of NCT Delhi	213	
	15.8		Quantification of uncertainty	214	
	15.9		Comparison of response spectra with actual earthquake	214	
	15.10		Suggestive implications of different parameters derived from the study of Seismic Hazard Microzonation for design of building codes and land use planning of NCT Delhi	214	
	15.11		Seismic hazard parameters of important structures	214	
	15.12		Monitoring and review of Seismic Hazard Microzonation Project	215	
	15.13		Conclusions	215	
	Refere	nces		220-	
	.			254	
	Seismi	c Hazard Microzor	iation maps	M1-	
	Annon	led Tables		M40 I-LXVI	
			r Constitution of Advisory and Monitoring Committee		

Annex-I: Office Order for Constitution of Advisory and Monitoring Committee Annex-II: A brief on Monitoring and Review process of Seismic Hazard Microzonation Projects. Annex-III: List of Participants

सचिव भारत सरकार पृथ्वी विज्ञान मंत्रालय पृथ्वी भवन, लोदी रोड़, नई दिल्ली-110003 SECRETARY **GOVERNMENT OF INDIA MINISTRY OF EARTH SCIENCES** PRITHVI BHAVAN, LODHI ROAD, NEW DELHI-110003

Digital seismology, which started only about 50 years back, enabled scientists to quantify the earthquake source parameters and help understand the faulting. However, it is equally important to understand the impact of the earthquakes on human habitats and to take measures to mitigate the seismic risk, due to future large earthquakes. It has been reported that major and great earthquakes which occurred in the Himalayan region caused significant damage in the Delhi region, which is located about 200 km from the source zones of these earthquakes. In the past half century, Delhi has become a major hub of urbanization. The population of Delhi has increased from 2 million to 18 million, and so has the risks. With diverse geological conditions in the 1500 km² area of Delhi, seismic risks cannot be uniform, and hence

it is important to evaluate the seismic hazard at micro-scale.

With this view, the Earthquake Risk Evaluation Centre (which is now merged with the new institute "National Centre for Seismology") undertook the major task of microzonation of Delhi. The report includes assimilation of new and existing data from ~450 sites, related to geological, geophysical as well as engineering aspects in preparing various products, e.g., shear strength of soil, bedrock depth, ground water table, soil liquefaction potential, peak ground acceleration and its amplification, spectral acceleration at sites, etc., for seismic hazard micozonation. I hope that the report will be extensively used by the structural design professionals, architects and planners, for planning and designing earthquake-safe buildings.

ajeevan

Tel. : +91-11-24629771, 24629772 🛛 Fax : +91-11-24629777 🗅 E-mail : secretary@moes.gov.in

Executive Summary

Earthquake is the most dreaded natural disaster especially for its intrinsic nature to unleash devastation instantaneously in large a rea without leaving much s cope for p revention of hazard after the occurrence of the event. Given the current state of knowledge, little can be done to modify the hazard by controlling tectonic processes. However, there are variety of ways t o control t he r isk or exposure to s eismic ha zards. All ov er t he w orld, t here is paradigm shift for the management of earthquake disaster from the response-centric regime i.e. 'Rescue', 'Relief' a nd 'Rehabilitation (3R)', t o m itigation a nd pr eparedness-centric regime i. e. pr e-disaster m anagement w hich includes. Prevention, M itigation a nd Preparedness (PMP), where efforts and funds are be used to address the underlying causes of vulnerability and for preparedness.

Damage to the life and property that is caused by an earthquake, can greatly be reduced by proper land use planning, engineering approaches, strengthening of existing structures etc.. Presently, the codal guidelines provided in IS: 1893 (Part I)-2002 are followed for primary structure de sign. T hese gui delines a re ba sed on the seismic z oning m aps, w hich a re prepared on the basis of seismotectonic provinces and premise that the earthquakes would re-occur in the same tectonic provinces where they have occurred in the past. These maps broadly define the geographical zones with level of expected hazard in the area either in terms of ex pected intensity of damage ranging between VI-IX on I ntensity scale or Peak Ground A cceleration (PGA) i n uni ts o f " g". I t h as be en s een du ring s everal pa st earthquakes that damage t o the built environment is not uniform over a popul ated a rea even when the quality of construction is near uniform. This is due to the varying response of the top layers of the soil to the propagation of seismic waves owing to several factors such as composition of the soil, local geology, and depth of water table and interaction of the buildings with t he underlying s oil dur ing an e arthquake. These a spects ha ve not explicitly been considered in the present zoning map.

Seismic Hazard Microzonation study, which is the process of estimating response of soil layers under e arthquake excitations and thus the variation of earthquake ground motion characteristics on the ground surface, addresses a llt hese i ssues and is on e of the important tools in disaster mitigation planning, as it c an minimize disaster impacts of an earthquake and need to be attempted systematically.

In its first attempts EREC initiated Seismic Microzonation of NCT and collated the data, generated data in gap areas, carried out analysis and integrated multi thematic maps and evolved S eismic H azard Microzonation Map of NCT, D elhi in collaboration with expert institutions and advise of working group of expert, constituted by DST and generated the 1st level Seismic Microzonation Map of NCT, Delhi on 1: 50,000 scale. Thereafter, EREC initiated Seismic H azard Microzonation study of N CT D elhi in more pr ecise scale on 1:10000 with specific objectives of actual applications in land use planning and designing of area specific b uilding co des for NCT Delhi. To i nitiate the study pr oject s pecific base map on 1:10000 s cale has be en generated by the S urvey of India, pr esenting NCT D elhi in 75

toposheets. The GSI, in association with EREC, carried out fresh geological mapping of Delhi on 1: 10,000, thus refining the available 1:25,000 geological map of the region. An intensive programme of ge otechnical and Geophysical data generation was taken up for about 500 sites in NCT Delhi.

An Advisory and Monitoring Committee was constituted by Ministry of Earth Sciences, under m y chairmanship with m embers from r eputed institutions of t he c ountry f or monitoring and supervising the study. On completion of generation of part of data, seismic hazard microzonation maps were generated for half of Delhi and presented in a workshop organized by EREC, IMD in November 2011, to a ssess the requirements of engineers, town planners. The workshop was attended by senior engineers from Central Public Work Department (CPWD), D elhi D evelopment A uthority (DDA), M unicipal C orporation o f Delhi (M CD), and scientist from di fferent i nstitutions. As per re commendation of workshop, a report for half of the D elhi was prepared based on tentative results and submitted to Ministry of Urban Development (MoUD), Government of Delhi to initiate strategy for implementation of microzonation products in design of site specific building codes. Now on completion of analysis based on all possible geotechnical/geophysical data generated at about 500 s ites a nd m aking us e of old ge otechnical da ta c ollected f rom different construction agencies, seismic hazard maps for whole of NCT Delhi have been generated and a report has been formulated after several discussions and final approval by the Advisory and Monitoring Committee.

The R eport c onsists of fifte en Chapters. The C hapter 1 'Introduction' de tails S eismic Scenario, d efinition, b enefits, na tional, a nd i nternational s cenario a nd pr esent s tatus of seismic hazard evaluation in the country and engineering approaches.

The geology, Seismotectonics, and the seismicity of the area play an important role in understanding the earthquake hazard and its evaluation. Further, water table of the area also plays an important role in deriving earthquake induced effect such as liquefaction. A brief review of Geology/Geomorphology, Tectonics, Seismicity, and hy drology of Delhi and adjoining area is discussed in the Chapter-2.

Intrinsic ch aracteristics of ear thquake ha zard, w hich differentiate fr om ot her n atural disasters, warrant spe cialized methodology of sei smic ha zard evaluation. The S eismic Hazard Microzonation (SHM), requires a multi-disciplinary approach and sequence of studies to generate parameters for source, travel path & ground characterization with inputs forthcoming from 4 disciplines viz. Geosciences (geology and geophysics), Seismology, Geotechnical Engineering, and Engineering S eismology. On the ba sis of li terature s urvey and earlier mic rozonation studies, a brief on concept of evaluation of seismic hazard, a holistic model evolved and used for Seismic Hazard Microzonation of NCT Delhi have been presented in Chapter-3.

The present study is on 1:10000 scale and to initiate the study, a base map on this scale was required and was developed in collaboration with Survey of India(SoI). In order to understand geological variation on this scale for the planning of geotechnical/geophysical investigations a geological map was developed in collaboration with GSI. Besides these

basic maps several other t hematic maps were also required. All these maps and their implications in the seismic microzonation are discussed in Chapter-4.

Seismic Hazard Microzonation process can broadly be classified in two processes. The first process is source characterization and generation of strong ground motion at base rock at di fferent s ites us ing P robabilistic or D eterministic S eismic H azard Analysis. In the second process, these strong ground motions are used as input motion and based on soil characteristics; site response study is carried out. In the present study Probabilistic Seismic Hazard A nalysis ha s been a dopted f or t he f irst p art of t he s tudy a nd a b rief o n methodology, a nalysis and ge neration of s trong gr ound motion and i ts pa rameters at engineering bedrock are discussed in Chapter-5.

Soil play very important role in accentuation of seismic ha zard. Different types of soil respond differently when subjected to the ground motion and therefore understanding of subsurface soil variation, static and dynamic properties of soil column is very important. Further, the present study is on 1: 10000 scale and therefore subsoil variability in every 100m ne ed t o be a scertained. T his r equires e xtensive geotechnical and ge ophysical investigations at many sites for evaluation of index and dynamic properties of soil. In the Chapter-6, requirement of such investigations, type of investigations, criteria to assess minimum number of sites for investigations to meet the requirement of the study etc have been di scussed. G eotechnical/geophysical i nvestigations h ave be en c arried out a t m ore than 500 s ites s pread over D elhi. B ased on t his da ta s et s tudy of s oil c haracteristics, development of empirical relation between SPT N values measured during drilling bore holes and in situ shear wave velocity obtained from geophysical investigations have be en carried out and also discussed in this Chapter-6.

Site soil classification is one of the key issues for the prognosis of earthquake ha zard parameters, because the concept and methods of site classification were put forward in the Code for s eismic de sign of buildings in s everal countries and the parameters of design response s pectrum ha ve be en determined by considering site classification. S ite classification methods are based on geologic genesis and characteristics su ch as the descriptions of s oil characteristics, overburden thickness of s oil layer and a verage she ar wave velocity. The present study of site characterization is based on Shear wave velocity. In the Chapter- 7, different techniques adopted for the evaluation of shear wave velocity, interpretation of data and finally classification of sites has been discussed.

Study of response of soil is the important component of Seismic Microzonation. There is variety of methods, available for estimation of site response and need to be carefully chosen according to the requirement of study, time frame, and merits of the techniques. The objective of present study of Seismic Hazard Microzonation on 1: 10,000 scale is to evaluate (i) P eak f requency of s oil c olumn a bove be drock (ii) P eak A mplification Factor/ratio of soil column above bedrock (iii) Peak Ground Acceleration (PGA) at surface

for different periods of exceedance and damping (iv) Amplification factor of soil column (v)Spectral acceleration at d ifferent pe riods (vi)Site specific r esponse spe ctra and therefore a combination of e xperimental and numerical te chniques have be en a dopted. Evaluation of P eak f requency and c orresponding P eak a mplification u sing bot h experimental and num erical techniques has be en di scussed in C hapter-8. In C hapter-9, ground r esponse s tudy based on num erical techniques, and making us e of ge otechnical geophysical data c ollected at 449 s ites, evaluation of d ifferent input p arameters for the analysis such as strong ground motion time histories simulation, evaluation of engineering bedrock and results of sei smic hazard parameters such as P GA at su rface, Peak Amplification, Peak frequency, site specific response spectra have been discussed.

Earthquake induced hazard, particularly liquefaction and land slide are also of concern for structural safety. Owing to the type of soil, flood plain of river Yamuna in north of Delhi, its m igration 1 eaving s oft s ediments, pa leochannels a nd a bandoned channels, liquefaction study become v ery important component of Seismic Microzonation of NCT Delhi. There are several methods based on empirical relation and experimental techniques based on laboratory investigation of soil. A simplified procedure based on the use of empirical correlations with standard penetration tests (SPT) is used for liquefaction susceptibility of Delhi. Detailed Methodology adopted for liquefaction study, data used and results obtained have been presented in Chapter 10.

In Seismic Hazard Microzonation based on different at tributes, seismic hazard maps of different t hemes have been ge nerated. In or der t o unde rstand t he c ombined e ffect o f different themes, maps of different themes have been integrated using GIS s oftware by giving suitable weightage to the attributes and rank to different themes and integrated map has be en developed. The de tailed proc ess of i ntegration and results ar e pres ented in Chapter-11.

In Seismic Hazard Assessment both epistemic uncertainty and aleatory uncertainty are inevitable which are reduced to the possible extent using different techniques and model. In response study several parameters are to be evaluated, simulated. In order to assess the level of accuracy available with data sets and results, assessment of sensitivity is necessary for a parameter to make the results sufficiently useful and valid. In chapter 12 sensitivity in all parameters associated uncertainty have been discussed.

Assessment of seismic hazard is an analytical methodology that estimates the likelihood that various levels of earthquake caused ground motions will be exceeded at a given location in a given future time period. Despite extensive advances in seismic knowledge, there are still major gaps in our understanding of different mechanism and the processes , that govern how an earthquake's energy propagates from its origin beneath the earth to various points near and far on the surface. These gaps in understanding mean that, there are inevitably significant uncertainties in the numerical results. Further, for the assessment of ground motion at surface which is influenced by the physical properties of the soil layers due to site effect, several field and laboratory investigations for ascertaining soil parameters are to be carried out. Based on these soil properties different input parameters, models are to be developed and used for site response study. Therefore possible uncertainties in investigations and model parameters used are to be assessed and validated. In the Chapter-12 ranges of uncertainties in different input parameters, models, intermediate and final products of Seismic Hazard Microzonation and validation of different model and results have been discussed for better judgment.

In order to easy applicability of results in building codes and to make them useful for retrofitting and land use planning, implications and adoption of different parameters derived from the study of Seismic Hazard Microzonation of NCT Delhi, for designing building codes and land use planning for NCT Delhi have been discussed, in terms of present building code in Chapter 13.

In Chapter-14, Seismic Hazard Parameters evaluated for a few individual important structures based on study have been presented to assess their present seismic strength and if required to make use of parameters for retrofitting. Summery and conclusions along with monitoring and review process adopted during the implementation of projects are discussed in Chapter-15.

The Committee hopes that the products of the study namely design response spectra generated for the various blocks of 9 districts of Delhi, will be made use of by the structural design professionals for planning and designing earthquake safe buildings and other life line and important structures, as well as the architects and town planners will use the microzonation maps in planning of future settlements and avoiding liquefiable areas.

10 auga

(Prof. A.S.Arya) Member, Bihar State Disaster Management Authority and Chairman, Advisory and Monitoring Committee

Preface

NCT Delhi is located in seismically vulnerable domain and lying in Seismic zone IV of the macro seismic zoning map of the country. Seismic Microzonation for New Delhi Capital Region was in focus for long time. Department of Science Technology (DST), the then administrative Ministry for earthquake related matter (Now Ministry of Earth Sciences) initiated Seismic Microzonation study in 1992 by constituting an Expert Group under the Chairmanship of Prof. N.C.Nigam for Seismic Microzonation of Delhi vide office order no. DST/23(32) ESS/91, dated 17th December 1992. The deliberation of this group leads to the recommendations of carrying out multi-institutional studies to achieve this goal.

In 1998 the Department of Science Technology once again constituted a small group under the Chairmanship of Prof. A.S.Arya, which gave comprehensive proposal for achieving of Microzonation in three stages covering an area of about 50 km X 50 km of NCT Delhi (the then master plan of Delhi). This group also identified the organizations, which would provide inputs for preparation of microzonation maps of Delhi area.

In 2001 keeping in view of the above background, an expert group was constituted by the Department of Science and Technology under the Chairmanship of Dr. H. K. Gupta, the then Secretary, Department of Ocean Development (DoD), New Delhi to work out the details regarding microzonation study for Delhi area. The expert group, after detailed discussion in two meetings, recommended a multi-disciplinary and multi institutional approach for carrying out microzonation of Delhi region. The expert group also recommended approach which involves four main components of implementation relating to (i) Identification of Seismogenic Sources (ii) Evaluation of ground motion characteristics (iii) Estimation of ground motion modifications and (v) Estimation of Secondary effects of ground motion such as Liquefaction Potential. Resource Organizations had also been identified.

Accordingly, in June 2003, vide OM No. DST/23(401)/SU/2003 dated 10th June 2003 a working group under the Chairmanship of Prof. D.K.Paul, IIT Roorkee, consisting of members from India Meteorological Department (IMD), New Delhi; Geological Survey of India (GSI); Indian Institute of Technology(IIT), Delhi, Indian Institute of Technology (IIT) Roorkee, Central Ground Water Board, New (CGWB) Delhi,Central Building Research Institute, Roorkee; Wadia Institute of Himalayan Geology (WIHG), Dehradun, Central Road Research Institute (CRRI), New Delhi and University of Delhi was constituted. The group started working on different identified component of Seismic microzonation of Delhi. DST had also sanctioned projects to CRRI, Delhi to collate geotechnical data available with different construction agencies, IIT Delhi to develop infrastructure for site response study. IIT Roorkee also started working on source Characterization and IMD initiated site response study through their available resources.

On setting up of Earthquake Risk Evaluation Center (EREC), a multi-disciplinary Division in India Meteorological Department (IMD) in February 2004 and with placement of core group of a multi-disciplinary scientists, in the fourth Meeting of Working Group held in December 2004, EREC was entrusted with the task of (a) Data collation (b) Data generation (c) Analysis and interpretation (d) Integration of data and (e) Preparation of seismic microzonation map of National Capital Territory (NCT, Area 1482 Sq Km). It was decided that all data generated by different projects sanctioned for Seismic Microzonation of Delhi shall be provided to EREC. Accordingly Earthquake Risk Evaluation Centre (EREC), in India Meteorological Department initiated Seismic Microzonation of NCT and collated the data, generated new inputs, integrated multi-thematic data and evolved Seismic Hazard Microzonation Map of NCT, Delhi in collaboration with expert institutions of the working group and generated the 1st level Seismic Microzonation Map of NCT, Delhi on 1:50,000 scale.

The results of Seismic Microzonation of NCT Delhi were made public by the then Hon'ble Minister of Science and Technology, Shri Kapil Sibal, through a press conference held on 23rd Dec 2005. This study was of qualitative assessment of hazard. On completion of Seismic Microzonation Study on 1:50,000 scale, EREC, (which is now merged with the newly created Centre of Seismology), had initiated Seismic Hazard Microzonation study of NCT Delhi with objectives to provide seismic microzonation products to meet all the requirements envisages from the point of view of earthquake hazard mitigation such as, formulation of site specific building codes for earthquake resistant construction, assessment of hazard to the existing structures for taking up retrofitting and land use planning.

To initiate Seismic Hazard Microzonation of Delhi on 1:10000 scale, project specific toposheets were generated by Survey of India (SoI), representing NCT Delhi in 75 toposheets. Geological map on 1:50000 scale was upgraded on 1:10000 scale in collaboration with Geological Survey of India (GSI), making use of innovative techniques and using old aerial photographs of 1960's and high resolution satellite imageries of recent origin. An intensive programme of geotechnical and geophysical investigations at more than 500 sites spread over NCT Delhi was taken up. Based on Probabilistic Seismic Hazard Analysis and subsequent ground response analysis to understand response of soil, several thematic and product maps have been developed. On integration of these maps, an integrated hazard index map has been developed; classifying NCT Delhi in Low, Moderate and High hazard Zones.

The Seismic Hazard Microzonation project was being monitored by an Advisory and Monitoring Committee constituted by Ministry of Earth Sciences, under the Chairmanship of Prof. A.S.Arya, former, National Seismic Advisor, and presently Hon'ble Member Bihar State Disaster Management Authority (BSDMA), with experts of varied disciplines as members. The report which consists of 15 chapters, tables depicting site specific parameters and maps has also undergone to rigorous review by the scientists and engineers from different disciplines. Seismic Hazard Microzonation products have also been discussed in different meetings and specially organized workshops.

(A.K.Shukla) Scientist'F" & Head Center of Seismology

Acknowledgement

To initiate the study project specific toposhets (Base map) were generated by Survey of India (SoI). Subsequently, geological map in collaboration with EREC were generated by Geological Survey of India (GSI) by deputing a dedicated team. The services of both these departments are acknowledged. Geotechnical field investigations were to strictly supervised to assure quality data generation. A special training course in geotechnical/geophysical field and laboratory practices was arranged by CSMRS is also acknowledged. Central Ground Water Board (CGWB), Delhi Development Authority (DDA), Central Public Work Department (CPWD) and Metro Road Corporation have provided geotechnical data and are acknowledged.

Sincere gratitude to Dr. H.K.Gupta, Hon'ble Member National Disaster Management Authority of India for his guidance in formulating methodology of Seismic Hazard Microzonation in Indian context while experimenting Seismic Microzonation of Jabalpur, which is the foundation of the present study.

Sincere gratitude to the then Secretary, Department of Science and Technology (DST), Prof. V.S. Ramamurthy, for showing confidence and entrusting this task of national importance to the center and his constant inspiration and support. Thanks to the former Chairman of the Standing Advisory Committee of EREC, Prof. V.K.Gaur and other members of the committee for their guidance and support to initiate this highly technical scientific study.

Sincere gratitude to the Secretary MoES, Dr. Shailesh Nayak, for his constant inspiration and guidance during the course of the study. Sincere gratitude also to him for his visionary approach of dealing such highly technical project and constituting an Advisory and Monitoring Committee of highest caliber, under the Chairmanship of Prof A.S Arya, former Seismic Advisor to the Ministry of Home Affair, Government of India and presently Hon'ble Member BSDMA, and members of repute such as Prof. D.K.Paul, IIT Roorkee; Prof. Sitharam, I.I.Sc. Bangalore; Prof. S.K.Nath, IIT Khargpur; Dr. Prabhas Pandey, former ADG, GSI; Dr. B.K.Bansal, Advisor, MoES; Shri A.K.Bhatnagar, former ADGM, EREC, which has facilitated coupling of their vast experience with the Center and made possible to complete the project of national importance.

Sincere gratitude to Dr. S.K.Srivastav, AVM (Dr.) Ajit Tyagi, former Director Generals of Meteorology, for their guidance and support. Thanks to Dr. L.S.Rathore, present DG, IMD who has always been inspiring source to the scientists of the Center and extended all possible support to complete the study.

Thanks to all officers and staff of the Center of Seismology who have been associated with huge amount of seismology, geotechnical, and geophysical data generation.

(A.K.Shukla) Scientist 'F' & Head Center of Seismology

Advisory and Monitoring Committee for Seismic Microzonation NCT Delhi, on 1:10000 scale

1.	Prof. A.S.Arya, Former Seismic Advisor Govt. of India; presently Member of Bihar Disaster Management Authority	Chairman
2.	Prof. D.K.Paul, Indian Institute of Roorkee,	Member
3.	Prof. T.G.Sitharam, Indian Institute of Science, Bangaluru	Member
4.	Prof. S.K.Nath, Indian Institute of Technology, Khargpur	Member
	Dr. B.K.Bansal, Advisor & Head Geosciences Ministry of Earth Sciences Government of India	Member
6.	Dr. Prabhas Pandey, Former, ADG Geological Survey of India,	Member
7.	Shri A.K.Bhatnagar Former ADG & Head, Earthquake Risk evaluation Center India Meteorological department	Member
8.	Representative of Central Ground Water Board (CGWB)	Member
9.	Representative of Survey of India	Member
	. Dr. A.K.Shukla, Head, Earthquake Risk evaluation Center India Meteorological Department rmanent Invitee	Member/Secretary
Pro Sh Dr Dr	of. M.L.Sharma, IIT, Roorkee of. C.S.Dubey, University of Delhi ri R.K.Singh, Director, EREC . H.S.Mandal, Meteorologist, EREC . A.P.Pandey, Meteorologist, EREC . H.S.Sisodia, Scientific Assistant, EREC	

<u>Scientists of EREC and Collaborative Institutes Associated with study of</u> <u>Seismic Microzonation of NCT Delhi on 1:10000 scale</u>

Earthquake Risk Evaluation Center, India Meteorological Department, New Delhi

Core Group Scientists

- 1. Dr. A.K.Shukla, DDGM/ Scientist F
- 2. Shri Ravi Kant Singh, Director
- 3. Dr. H.S.Mandal, Meteorologist Gr.I
- 4. Dr. Ajeet P. Pandey, Meteologist Gr.I

Associated Scientists

- 1. Shri Dal Singh, Scientists E
- 2. Shri J.S.Jariyal, A.M.
- 3. Dr. H.S. Sisodia, S.A.
- 4. Shri B.S.Meena, S.A.
- 5. Shri B.R.Sharma, S.A.
- 6. Mr Matsyendra Shukla, Research Associate
- 7. Mr Medhankar, Research Associate
- 8. Dr (Mrs) Rajwant, Research Associate
- 9. Shri Rana Research Associate
- 10.Ms. Sarita Tiwari, Research Fellow
- 11.Shri Naresh, Research Fellow
- 12.Shi Brijesh, Research Fellow

Indian Institute of Technology Roorkee

Prof. M.L.Sharma and Group, (Department of Earthquake Engineering, IIT Roorkee)

Geological Survey of India

Central Ground Water Board

CHAPTER-1

INTRODUCTION

Seismicity driven by tectonic processes of continent-continent collision between Indian & Eurasian plates along Himalayas, subduction of Indian plate underneath Burma plate in the east and intra-cratonic or intra-plate a ctivity in peninsular domain r enders I ndian subcontinent vulnerable to Earthquake Hazard. In India earthquakes have taken a toll of more than 100,000 l ives in the last 100 ye ars. Among the r ecent earthquakes in India, Latur, M aharashtra i n 1993 ki lled 10,000 pe ople, Jabalpur, M adhya Pradesh in 1997 killed 39 pe ople and 8267 hous es collapsed, Bhuj, Gujrat of January 26, 2001 c laimed 13,805 lives and caused damage to 12, 05,198 houses.

The entire Himalayan belt is c onsidered p rone t o Great e arthquakes of m agnitude exceeding 8.0. R ecent scientific research points to the likehood of occurrence of a very severe earthquake in the Himalayan r egion, which c ould a dversely a ffect the lives of several million people in India. Fear of the earthquake, in sensitive domains, has become part of the social ps yche-causing i mpediment t o de velopment. As per S eismic Z oning Map of India (BIS IS 1893, Part 1:2002) about 30% of the territory of India falls in Zones IV and V, which has high probability of earthquakes causing damages of intensity of the order of VIII and IX and above.

National C apital T erritory (NCT) of D elhi occupies a n a rea of 1482 s q km s preading between Lat 28 ⁰24[']01["] & 28 ⁰53[']00["] N and L ong 76 ⁰50[']24["] & 77 ⁰20[']37["] E (Toposheet53 D/14 & 53H/1,2,3,6, and 7)lies in Seismic Zone IV of the Seismic Zoning Map of India (BIS IS 1893, Part 1:2002). Geographically, the region is located on folded crustal r amp represented by basement rocks of DelhiSuper Group, bounde d by t wo regional faults viz Mahendragarh-Dehradun Sub Surface Fault (MDSSF) in the west and Great Boundary Fault (GBF) in the East Delhi.The ramp trending NNE-SSW across the 'fore deep' is juxtaposed to Himalayan thrust belt. Another important structural element of the belt is NW-SE trending Delhi-Sargodha Ridge (DSR) which passes through Delhi and is flanked by basins on either side, viz Sahaspur Basin in the north and Bikaner Basin in south west.

Delhi and its environs have been affected by earthquakes from far field seismic sources in the Himalaya, such as Uttarakashi earthquake (ML = 6.4, 20 October 1991) and Chamoli earthquake (ML = 6.8, 29 M arch 1999, I; VIII). In addition to this, Delhi region has also been affected by earthquakes of the peninsular [Historical earthquake of Delhi (M: 6.5, 1720); Mathura earthquake (M: 6.8, 1803); Bulandshahar earthquake (M: 6.7, 1956); and Faridabad e arthquake (M:6.0, 1960)]. Thus, t he s eismic vul nerability of bui lt environment of Delhi need be examined *vis-a-vis* high frequency ground motions due to events e ndemic t of frequency c ontent of

attenuated events with source z one in thrust do main of the Himalayas. Fault line s of consequence in the domain are (i) Mahendragarh Fault, (ii) G reat B oundary Fault, (iii) MoradabadFault, and (iv) S ohna Fault. Thus the potential seismic hazard in the area is attributed to both Himalayan thrust system and activation of fault systems of DFB.

The Structurally controlled Quartzite R idges of Delhi have or iginally provided seed to growth of "Seven C ities" in the past (Historical map of D elhi, F igure1.1). However, subsequently the agglomerations have grown out and encroached on the alluvial flood plains of Y amuna R iver c haracterized by dynamically s hifting t halweg-leaving palaeochannels w ith H olocene s ediment f ills. S ignatures of t he r iver m igration a re evident e ven in the last c entury from the topographic maps. A major part of the new sectors of the city in the North and East have developed on pe diments and alluvial plain encroaching on flood plains of low return period. The western part of the city, excepting for r ocky l and of Anand P arbat, i s m ostly o n A eolian s ediments c haracterized by conspicuous internal drainage.

The present state of Delhi (National Capital Territory) with its 9 districts (Map-1), which has 9 disticts, oc cupies a n a rea of 1482 s q km. A s per t he 2001 -based C ensus, t he population of Delhi was 138.50 Lakhs. It was projected that the population would touch to 180 Lakhs by 2011 and 234 Lakhs by 2021. As per primary census abstract 2011, the population of D elhi i s 167.87 l akh. T he p rojection w as ne arly c orrect a nd w ith t he average growth rate since the census of 1881, the population would touch to 203.47 lakh by 2021(Figure 1.2). Population density distribution in Delhi is presented inMap-2.

The ge oscientific c onstitution of t he a rea pr ovides a hi ghly va riable d omain w ith a complex s cenario ha ving s cope of r apid c hanges i n s eismic a ccentuations. This complexity is further a ggravated by l ong history of evolution of Delhi as a mega pol is and its further growth with new emerging centers of suburban agglomeration under the new c oncept of N ational C apital R egion (NCR). T hus t he c omplex i nterplay of seismotectonics, lithological assemblage in terms of soft sediment accentuation, and coexistence of structures of medieval period as well as the most modern skyscrapers and well-laid m odern r esidential bui ldings s et un ique c onditions, w hich ne ed c loser evaluation for Seismic Hazard.

Figure 1.1: Historical Map of Delhi

In this context 'Seismic Hazard Microzonation' (SHM) which is a process of classifying the given geographic domain into small units of likely uniform Hazard (H) level (Peak Ground Acceleration/Spectral Acceleration), hazard nature (susceptibility to liquefaction and slope failure), by estimating response of soil layers under earthquake excitations and thus the variation of earthquake ground motion characteristics on the ground surface, and provides hazard parameters such as (i) frequency dependent accelerations at each site at bedrock le vel on f uture s eismic s haking, (ii) s ite a mplification due to soft s ediment present at the site, (iii) probable manifestation of earthquake hazard in terms of induced ground fissuring, land deformation-landslide & liquefactionis one of the important tools for disaster mitigation planning, as it can minimize disaster impacts of an earthquake.

Figure 1.2: Projected Population growth in NCT Delhi

In vi ew of t he c ultural a nd administrative impor tance of th e c ity, seismic-tectonic vulnerability of the domain and wide variations in ground conditions with reference to "Seismic Rigidity", Seismic Hazard Microzonation of Delhi was of great concern. The Department of Science Technology (DST), the then administrative ministry controlling the earthquake related matter, constituted an expert group under the Chairmanship of Dr. H.K.Gupta, the then Secretary, Department of Ocean Development (DoD),New Delhi to work out the details regarding microzonation study for Delhi area. The expert group, after detailed di scussion i n t wo m eetings recommended a m ulti-disciplinary a nd m ulti institutional approach for carrying out microzonation of Delhi region. The expert group also recommended an approach which involved four main components of implementation relating t o (i) I dentification of S eismogenic Sources (ii) E valuation of gr ound m otion characteristics (iii) E stimation of gr ound motion modifications and (iv) E stimation of Secondary effects of ground m otions uch as Liquefaction Potential. R esource Organizations had also been identified.

First Level Seismic Hazard Microzonation Map of the National Capital Territory of Delhi occupies an area of 1482 sq km spreading between Lat $28^{0}24' \ 01'' \ N\& 28^{0}53' \ 00'' \ N$ and Long 76 ⁰50' 24'' E & 77 ⁰20' 37'' E (Toposheets 53 D /14 & 53H /1, 2, 3, 6, and 7) wasgenerated on 1:50,000 scale by Earthquake Risk Evaluation Center (EREC) of India Meteorological Department (IMD), M inistry of E arth Sciences(Map-3). In this study Scientists from s everal expert institutions, s uch as G eological Survey of India (G SI), Central Road Research Institute (CRRI), Indian Institute of Technology Roorkee, Survey

of I ndiaand Central Ground W ater B oard (CGWB) m ade t heir c ontributions. Central Road R esearch I nstitute (CRRI) c ollected 4 41 ge otechnical r eports f rom D elhi Development A uthority (DDA), C entral Public W orks Department (CPWD), and Delhi Metro Road Corporation (DMRC). EREC also collected 50 more reports from DDA. IIT Delhi pr ocured Engineering S eismograms and evaluated shear w ave velocity using MASW techniques at different sites. The then Hon'ble MoS, Department of Science and Technology r eleased the same through a press conference h eld on 23r d Dec 2005. The Products of this study were assessed to be useful for qualitative assessment of the seismic hazard of NCT Delhi.

To make the microzonation exercise more meaningful for societal us e, with specific objectives of act ual app lications in land us e planning and designing of area specific building codes for NCT Delhi, Earthquake Risk Evaluation Center, India Meteorological Department, Ministry of Earth Sciences initiated the process of upgradation of this study on 1: 10000 scale. To initiate the study project specific base map on 1: 10000 scale has been generated by the Survey of India, presenting NCT Delhi in 75 toposhets. The GSI, in a ssociation with EREC, carried out fresh geological mapping of Delhi on 1: 10,000, thus r efining t he a vailable 1: 50,000 ge ological m ap of t he r egion. An i ntensive programme of ge otechnical, ge ophysical and seismological data ge neration has be en taken up a t a bout 500 sites i n N CT D elhi. A n A dvisory a nd M onitoring C ommittee constituted by the Ministry of Earth Sciences, under the chairmanship of Prof. A.S. Arya, Former N ational S eismic A dvisor a nd presently M ember of the B ihar State D isaster Management A uthority a nd m embers f rom r eputed i nstitutions of the c ountry has supervised the study. Office Memorandum is annexed as Annexure-1.

CHAPTER-2

GEOLOGY, TECTONICS, SEISMICITY AND HYDROLOGY OF THE AREA

Delhi and its environs are located in the northernmost continuity of Aravalli Ranges (Figure 2.1a).Dynamic f luvial m orphology a nd ge odynamic a ctivity i mparted to extension of Aravalli Ranges as juxtaposed to the Himalayan domain and its unique location i n t he Seismotectonic Map o f I ndia attracted a ttention o f several researchers(Dasgupta et al., 2000 and references therein). Delhi and adjoining areas are s et in s eismotectonically vulnerable domain, where the g eological s tructurs are juxtaposed t o ge odynamically a ctive do main of the Himalaya w ith r ecords of historical and recent earthquakes. Wyss (2005) has emphasized its vulnerability vis-à-vis impending seismic hazard of the Himalayan domain. In addition to vulnerability with r espect to Himalayan s eismicity, studies on s eismicity (Tandon and Chatterjee 1968; K amble a nd C haudhury, 1979; V erma et a l., 1995 a nd Bhattacharya et a l., 2001) show that Delhi and its neighborhood have also been seismically active in the past.

2.1: REVIEW OF GEOLOGY OF THE REGION

Physiographically, D elhi a nd i ts a djoining a reas a re s urrounded i n t he nor th a nd e ast bythe Indo-Gangetic Plains, in the west by the extension of the Great IndianThar desert and in the south by the Aravalli ranges (Figure2.1b). The terrain is generally flat, except for a low NNE–SSW trending D elhi r idge i n the c entral portion of the region, which forms the central part of the National Capital Region (NCR) Delhi.

The rock formations exposed in the Delhi area are mainly quartzite of the Alwar series of the Delhi Supergroup that are interbeded withthinmicaceous schist bands. Srivatava et al. (1980) grouped these rocks of Delhi area as the Alwar formation of Delhi Super group while, Kachroo, and Bagchi (1999) have classified them as Barkhol formation of the Ajabgarh G roup of t he D elhi Supergroup. P roterozoic rocks oc cur a long t he r idge, extending from Harchandpur (Haryana) in the south to Wazirabad in the north (Delhi). Quaternary sediments directly overlie the Proterozoic rocks. The geological succession of these rocks reviewed by Kachroo and Bagchi (1999) is given in Table 2.1.

Srivastava e t a l. (1974) a nd K achroo a nd B agchi (1999) ha ve c arried out s ystematic geological and geomorphological mapping of the Delhi area and identified three distinct surfaces. The highest is the erosional surface forming the top of denudational hills. The second s urface i s O lder A lluvial pl ain a nd t he third i s de positional Y ounger A lluvial

plain (Yamuna). T he geomorphologic f eatures ha ve und ergone c hanges due t o widespread and unc ontrolled ur ban a ctivity. K achroo a nd B agchi (1999) ha ve further, classified Delhi region into five geomorphic units: Mehrauli-Masudpur-Wazirabad ridge, Badarpur-Okhala hillock, Older Alluvial Plain, Yamuna Older Flood Plain, and Yamuna active channels. The geological map of Delhi after Kachroo and Bagchi (1999) is shown in Figure 2.1b.

The rocks of Delhi system have undergone multiple folding and different phases of metamorphism w ith time (Naha e t a l., 1 984 a nd 19 87 a nd Roy, 1988). Three generations of folding have been found in the rocks of Delhi (Gangopadhyay and Sen, 1968). The fold axes of first generation fold follows the trend of main ridge i.e.NNE-SSW, the s econd generation f old trending N E-SW ar e observed a t T uglakabad-Mehraulli area, and third fold generation trending NW-SE at Anand Parbat. The rocks are highly jointed and two sets of conjugate vertical to sub-vertical joints have been reported (Kachroo and Bagchi, 1999). These are N NE-SSW and WN W-ESE joints conforming to the older and ne wer structural trends. Srivastava et al. (1980) have inferred a number of faults trending NNE-SSW, NE-SW and WNW-ESE.

Buger	II, 1777).		
	Yamuna	Grey, fine to medium sand,	Point bars, channel
	Channel	grit with coarse sand, silt and	deposits
	alluvium	clay	
	Yamuna Older	Grey sand, coarse grit, pebble	Palaeochannels,
	Flood Plain &	beds and minor clays	abandoned channels,
Holocene	Terraces		meander scrolls, ox-bow
			lakes.
	Older Alluvium	Sequence of sand-silt-clay	Abandoned channels,
		with yellowish brown medium	meander scrolls
		sand with silt, kankar with	
		brown aeolian sand	
		Unconformity	
Neoproterozoic	Post Delhi	Pegmatitic, tourmaline-quartz	
	Intrusives	veins and quartz veins	
Mesoproterozoic	Delhi	Alwar Group	Quartzite with minor
	Supergroup		schist, tuff and ash beds

 Table 2.1: Stratigraphic succession of rocks in Delhi area (modified after Kachroo and Bagchi, 1999).

The r iver Y amuna pa sses t hrough t he e astern pa rt of t he D elhi a rea. T he r iver has oscillated laterally along a N-S axis. At the initial stages, it migrated steadily to the east and subsequently in the last phase to the west and got c ontained there because of the depression caused by a N-S trending faults (Thussu, 2001). The right palaeobank of the

Yamuna River is in the north of Delhi around Narela, and from there it turns almost eastwest at Wazirabad and follows the boundary of the ridge to further south (Thussu, 2001). There are a large num ber of paleochannels and a bandoned channels of river Yamuna north of Delhi. A map showing migration of Yamuna River around Delhi during 1807 -1985 has been generated on the basis of historical toposheets/maps of different periods available in the Archeological Survey of India (Figure2.2).

2.2: REVIEW OF MAJOR TECTONIC FEATURES OF DELHI AND ENVIRON

The nor theastern part is oc cupied by t he H imalayan t ectonic be lt as de scribed a bove whereas; the southern part is oc cupied by the Proterozoic Delhi fold belt and gne issicbatholithic complex. In the area near Delhi and southward, outcrops of highly jointed and folded Alwar quartzites are observed. Two tectonic sub-provinces viz. Delhi-Moradabad province and K asganj-Ujhani province ar e r ecognised which are s eparated from each other along the trace of Moradabad fault zone. In K asganj-Ujhani province (Srivastava and S omayajulu, 1966) the V indhyan s equence over lies the A ravalli folded ba sement whereas, the Neogene directly overlies the Delhi basement in Delhi-Moradabad province. The Moradabad fault zone forming the bound ary between these two tectonic provinces has be en found to have general trend a long NE-SW di rection. This tectonic feature is traceable on to the shield area as a tectonic boundary between the Delhi Foldbelt and the Vindhyans.

A north-northeastward ridge like extension of the Delhi fold belt towards the Himalayas has been postulated and called as the Delhi-Hardwar ridge. This ridge has controlled the western limit of G anga basin and the underlying s edimentary s equence s eems to have thinning e ffect t owards t his r idge. T he e xposed P roterozoic D elhi Foldbelt a nd t he Frontal Fold zone of the Himalaya form the southwestern and northern limits of Delhi-Moradabad tectonic province, respectively.

The D elhi-Haridwar r idge forms the w estern m argin of the G anga basin. The e astern margin of the Ganga basin is limited by Monghyr-Saharsa ridge of Satpura metamorphic, whereas, the basin is abutted against S iwalik foothills in the north, which is separated from higher Himalayas by a thrust. The Bundelkhand granites/gneisses of

Figure 2.2 Showing migration of Y amuna R iver around D elhi during 1807 - 1985, generated on t he b asis of hi storical t oposheets/maps of di fferent p eriods available in archives of Archeological Survey of India.

Precambrian Aravalli and Satpura crystallines and Purana sediments of Vindhyan group are e xposed a long t he s outhern f ringes. T he t ectonic hi story of t he G anga b asin adjacentto the Indian peninsular shield is different and the sediments show subsidence. It is generally believed that the subsidence of this belt isinterlinked with the Himalayan orogeny. It seems that the basement of the Ganga basin is adjusting its stress and strains of orogenic phenomena continuously (Sastri et al., 1971).

One of the most conspicuous faults in the southeast of Delhi is the R ajasthan Great Boundary Fault. Surface trace of this fault is delineated as a well-defined lineament (Chittaurgarh-Machilpur Lineament) because of the presence of contrasting geomorphic units on e ither s ide. The G reat B oundary F ault a long with its subsidiaries e xhibits imprints of repeated reactivation at different stages of the evolutionary history of this belt. The Mahendragarh-Dehradunsubsurface fault (MDSSF) extends northeasterly up to the H imalayan f oothills. N orth of the G reat B oundary F ault (GBF), B ouguer gr avity anomaly contours display a general pattern in accordance with the main tectonic grain. However, in the southeastern part they take an easterly swing.

On the basis of satellite image (remote sensing) studies it has been seen that some of major geomorphological features viz., Lahore - Delhi ridge, Delhi axis of folding, Delhi Haridwar ridge and the Himalayan Frontal Fold zone are clearly displayed following the regional trends (Srivastava and Roy, 1982). Criss-cross lineaments near Delhi (Hukku, 1966; Mehta et al., 1970 and Gupta and Sharda, 1996)show the complexity of the region probably due to conjoining of the above mentioned geological features. A fault running in N-S di rection f rom S ohna t o t he w est of Delhi has b een m apped by the Geological Survey of India and named as Sohna fault along which a hot spring occurs at Sohna.

Figure2.3: Seismotectonic map around Delhi (modified after Dasgupta et al., 2000).

The ge otechnical m apping, ge ophysical survey, and r emote s ensing studies ha ve indicated presence of many lineaments around Delhi (Figure 2.3). The seismotectonics in and around Delhi is shown in Figure 2.3. Based on these studies, the main tectonic element of DFB having be en de fined in una nimity a re (i) M DSSF, (ii) GBF, (i ii)

Moradabad Fault, (iv) DSR and some highlighted importance of (v) Sohna Fault and (vi) Mathura Fault. The Sohna fault is associated geothermal activity. It is important to note that the MDSSF and DSR are the structures offering area source at the intersection of the two with diffused seismicity whereas other offer line sources.

2.3: REVIEW OF SEISMICITY OF DELHI REGION

In the ancient literature, Varaha Mihira, who lived in 5th-6th century, has mentioned Northern I ndia, i ncluding D elhi a nd i ts surroundings a st he f elt r egion of s evere earthquakes (Ivengar, 1999). The earthquake of 15th July 1720ne ar Sohna has be en described by O ldham (1883), in which walls of the fortress and many houses in Delhi were destroyed. It was followed by 4 to 5 aftershocks per day for 40 days and occasional shocks f or 4 t o 5 m onths. T he l ikely m agnitude f or t his e arthquake, ba sed on macroseismic da ta ha s be en a ssigned by I MD a s 6.5. An e arthquake of i nferred magnitude of 7.0 is stated to have occurred in Mathura region in 1803 (Oldham, 1883). Iyengar (2000) and Tandon (1953) mentioned damage to Qutub Minar during the 1803 earthquake in Delhi. This earthquake was felt in very large area and was responsible for damage to buildings in which 23 p ersons were killed in Bulandshahar and some were injured in Delhi. An earthquake known as Gurgaon earthquake, on 27th August 1960, of magnitude 6.0 ne ar Sohna about 60 km of SE of Delhi was reported (Srivastava and Somayajula, 1966). The earthquake was felt at K anpur and J aipur. M inor property damages and injuries to about 50 persons were reported from Delhi. On 28 July 1994, an event of m agnitude $M_1 = 4$ caused minor da mage to the m inarets of Jamma M asjid (Ivengar a nd Ghosh, 2004). O n28th February 2001 a nd 28th April 2001, D elhi experienced two small earthquakes of magnitude 4.0 and 3.8, respectively of local origin. Far di stance Himalayan earthquake namely Uttarkashi (19th Oct., 1991, 6.4Mb) shoock Delhi to the e xtent of int ensities V. The f elt int ensity of the r ecent Chamoli earthquake(28th March, 1999) was V I at D elhi (IMD, 2000) and maximum intensity noted in a narrow epicentral tract, in Alknanda valley was VIII (GSI Report 2000).

The history of past earthquakes experienced in and around Delhi shows that it is situated ina region liable to moderate damage by earthquakes. Some of the historical & significant past earthquakes near Delhi are given in Table 2.2 and on map in figure 2.4.Delhi and its environs have also be en damaged by e arthquakes from far field seismic sources in the Himalaya [Chamoli earthquake (M: 6.8, 1999)].

Instrumental studies of seismicity around Delhi region could be made possible only after setting up of D elhi R idge O bservatory on 01.12.1960, (with Benioff (S P) a nd Spregnether P ress-Ewing (LP) s eismometers) under World Wide S eismic S tandard Network (WWSSN). In addition, two-component Wood Anderson seismograph was also installed to determine the magnitude of the local earthquakes. To monitor tremor activity that oc curred during the period 1963-64; mobile s eismic obs ervatories were s et up by IMD a t R ohtak, Sonepat, and S ohna. A B roadband s eismograph, w ith C MG 40T, broadband sensor and 72A 07 (Reftek Make) 24-bit data acquisition system was installed at Delhi ridge observatory in December, 1999.

SI.No	Date	Epicente	r	M	Region
		° N	°E		
1	15-07-1720	28.37	77.10	6.5	Delhi
2	01-09-1803	27.50	77.70	6.8	Mathura
3	16-01-1842	27.00	78.00	5.5	NearMathura
4	10-10-1956	28.15	77.67	6.7	Near Bulandshahar
5	27-08-1960	28.20	77.40	6.0	Near Faridabad
6	15-08-1966	28.67	78.93	5.8	NearMoradabad

 Table 2.2: Historical & significant past earthquakes in Delhiand around Delhi

With the above mentioned setup of monitoring system, swarm activity was recorded in Sonipat a rea dur ing 19 63-65 in northwestern part of D elhi a mbiance. The s patial distribution of s eismicity based on t hese data s howed s eismic activity c oncentration at three different regions, namely west of Delhi, near Sonipat and close to Rohtak indicating extension a nd t rends of f aults bur ied under thick a lluvium de posits. Seismic a ctivity around D elhi is shown in F igure 2.5 for the period 1966-1974, in F igure 2.6 for the period 1975-1987 and in Figure 2.7 for the period 1988-2000.

Figure 2.4:Locations of historical& significant past earthquakes near Delhi alongwith nearby seismological observatories.

Figure 2.5: Locations of Earthquakes Recorded by IMD Network aroundDelhi during 1966-1974

Figure 2.6: Locations of Earthquakes Recorded by IMD Network around Delhi during 1975-1987

Figure 2.7: Locations of Earthquakes Recorded by IMD Networkaround Delhi during 1988-2000.

2.3.1: Recent Seismicity around Delhi and Spatial Distribution

For close and continuous monitoring of seismicity in and around the Capital region, a Digital D elhi te lemetered network with VSAT c ommunication facility has be en established during 1998-2000(Shukla et al., 2001,2002). This network consists of 16 field seismic obs ervatories with VSAT c ommunication link and Central R eceiving Station (CRS) at IMD HQ at New Delhi. Out of these sixteen field stations, five are within 50 Km radius from CRS Delhi, four are in between 50 and 80 Km radius, another four are in 80 to 200 Km radius, and other three are in the range of more than 200 Km. Each field observatory is e quipped with s hort pe riod S -13 seismometer. Observatories at A gra, Sohna, K hetri, a nd Kalagarh a re e quipped with three c omponent s eismometers w hile remaining observatories are having vertical seismometer. A location map of field stations is shown in Figure 2.8.

Figure 2.9. v SAT sensitive tereffectry network in and around if enn. Executions of field Observatories of D elhi Telemetry Network[0-50 K M: A yanagar (AYN), B ahadurgarh (BHGR), Bisrakh (BIS),Rataul(RTK), Sohna (SOHN); 50 - 80 KM: Kunda l (KUN), Unchagaon(UNCH), Asaura(ASR), R ohtak (RTK); 80-200KM: K urukshetra (KKR), Kalagarh (KLG), Khetri (KHE), Agara (AGR); > 200 K M: Joshimath(JOSH), Jaisalmer (JSL), Kalpa(KLP)]

Epicenter map of earthquake recorded by S eismic telemetry network during 2001-2004, which have also been considered for Hazard analysis, is shown in Figure 2.9. During the period 2001 -2004, 288 e arthquake e vents have be en l ocated by S eismic Telemetry Network of IMD in and around Delhi. Of these, more than 90% events are of magnitude less than 3.0 with shallow focal depth (\leq 15 km).

A t otal of 74 e vents w ith maximum ma gnitude of M_L: 3.8 (28th A pr' 2001) w ere recorded within the politicalboundary of NCT Delhi. The analysis of spatial distribution of s eismic e vents (2001-2004) br ings a bout a p attern w hich c onforms t o s tructural attributes of DFB. During t he pe riod of obs ervations a bout 50% of events a re l ying proximal t o t race of MDSSF, w hereas a bout 74 % e vents s how c lustering i n N W-SE direction c oincident w ith D SR. Focal M echanism s olution of e arthquake gr eater t han three during the period 2001-2004 is also shown in Figure 2.10 (Shukla et at., 2007). The subsurface strike slip fault of MDSSF provides a major discontinuity zone for nucleation of s eismicity. A nother c lustering a long D SR r eveals pr esence of a b elt parallel t o the Himalayan fold system. This belt is of significance with regards to seismic hazard as it traverses across NCT Delhi. Forthe 28 April 2001 (*Mw* 3.4) and 18 March 2004(*Mw* 2.6) Delhi earthquakes, Bansal *et al.*(2009), generatedfocal mechanism solutions based on the first motionand waveform modelling. Based on these solutions theauthors suggested that these earthquakes involvednormal faulting with a large strike–slip component.

Figure 2.10: Focal Mechanism Solutions for the earthquakes of magnitude >3.0 recorded by Delhi Telemetry Network (after Shukla et al. 2007)

During 19th Dec'2003 to 31st Jan'2004 a s warm type a ctivity a round J ind w as a gain observed a nd m onitored by e stablishing a local ne twork of s ix s tations by I MD supplementing the Delhi Telemetry network. The swarm is characterized by 152 tremors, out of which 62 e vents range in magnitude between 0.5 a nd 3.4. O n an average 5 t o 6 events were recorded daily with maximum number of 18 t remors on 23^{rd} Dec 2003 a nd 2^{nd} Jan 2004. The low magnitude swarm has moment release of the order of 6.7×10^{21} Nm. The swarm events show a clustering in 2x8 km area confined to two pockets of urban area of Jind apparently coincident with NW-SE trend of DSR (IMD report 2004, Suresh et al. 2005).

Epicenter m ap of e arthquakes r ecorded by Seismic t elemetry network of IM D during 2005-April 2012, is shown in figure 2.11. During the period 2005 – April 2012, 422 earthquake e vents have be en located in a nd a round D elhi. Of t hese, m ore t han 90% events are of m agnitude less t han 3.0, with shallow focal de pth (\leq 15 km). The M 4.2 (7May 2006), M4.6 (25 November 2007) and M 5.1(5 March 2012) earthquakes are some of the events felt in and around Delhi.

The well constrained focal mechanism of the earthquake of 25 N ovember 2007 (Mw 4.1 subsiquently revised to M 4.6) computed by Singh *et al.*(2010), shows strike–slip faulting with some normal component. Immediately on occurrence of this earthquake an intensity survey w as c onducted b y I MD and t he i soseismal m ap of 25 N ovember 2007, D elhi earthquake w as de veloped us ing g eo-statistical a nalysis tool w ith lo cal pol ynomial interpolation m ethod. T he i soseismal m ap s hows t hat m ost pa rts of D elhi r egion experienced an intensity of V on MMI scale. The maximum intensity V was estimated for a l ength of a bout 80 k m a long e longated track in WNW-ESE di rection with mean

isoseismal r adii of a bout 29.13km . T he or ientation of e longated e picentral t rack of intensity field shows that the stress release was pronounced along Delhi-Sargodha ridge and earthquake w as at tributed to activities of this r idge (Prakash e t a l. 2011) . The earthquake of 5 March 2012, with epicenter at Delhi-Haryana border was felt widely in Haryana, Delhi and neighboring states. Intensity on the MMI scale equivalent of VI was experienced in the epicentral region close to the Delhi–Haryana border. The epicenter of the ear thquake f alls ne ar t he s urface expression of t he M ahendragarh–Dehradun F ault (MDF), located to the northwest of Delhi. Peak ground acceleration recorded in the Delhi region va ried f rom a minimum of 2.50 c m/s² to a m aximum of 39.4 c m/s² on t he transverse component a t t he R idge O bservatory a nd J affarpur s tations r espectively, located about 60 and 34 km away from the epicenter (Bansal and Mithila, 2012).

2.4: REVIEW OF H YDROLOGY O F NA TIONAL CAP ITAL T ERRITORY DELHI

The gr ound w ater availability in the territory is controlled by the hydrogeological situation characterized by occurrence of different geological formations namely Delhi (Quartzite) R idge, O lder & Y ounger A lluvium. T he N CT Delhi c an b e di vided i nto following distinct hydrogeological units: Newer Alluvium - Yamuna flood plain deposits, Older A lluvium - Eastern a nd w estern s ides o f t he r idge, O lder A lluvium - Isolated andnearly c losed C hattarpur a lluvial ba sin a nd Q uartzitic F ormation - NNE-SSW trending Quartzitic Ridge. The various sources of water for the purpose of recharge are rainfall, surplus water in Yamuna River during the monsoons or floodwater and treated wastewater from treatment plants. The normal annual rainfall of NCT Delhi is 611.8mm. About 81% of the annual rainfall is received during the monsoon months July, August, and S eptember. The rest of the annual rainfall is received in the form of winter rain. Central Ground Water Board (CGWB), a subordinate of fice of the Ministry of Water Resources, G overnment of I ndia, i s t he N ational A pex A gency e ntrusted with t he responsibilities of providing scientific inputs for management, exploration, monitoring, assessment, a ugmentation, a nd r egulation of gr ound w ater r esources of t he c ountry. Monitoring of ground water levels is one of the major activities of the CGWB, through a network of ground water observation wells comprising both large diameter open wells and pur pose-built bor e/tube w ells (piezometers). T o m onitor gr ound w ater l evel indifferent part of NCT, CGWB has setup 162 ground water monitoring systems, which includes 251 arge di ameter ope n wells (DW) and 137 pur pose-built bor e/tube w ells (piezometers) PZ. The ground water monitoring stations are spread over both Alluvial as well as Delhi ridge area. Nearly 60 stations fall in Delhi ridge area whereas 109 stations alluvial area including Y amuna F lood P lain.District w ise distribution of fall in hydrograph network stations is highly uneven and varies from one monitoring station per 1.4 Sq. Km in New Delhi district to one monitoring station per 30 Sq. Km in North East district. Figure 2.12 shows location map of National Hydrographic Monitoring Stations in National C apital Territory, Delhi (CGWB, Y ear Book 2010-2011).Ground water levels are being measured four times a year during January, April/ May, August and November. On the basis of data generated from this network, CGWB generate different reports and maps.Depth to water table maps usually presented for Delhi S tate on appropriate s cale bringing out suitable depth ranges say; 0-2 m, 2-5 m, 5-10 m, 10-20 m, 20-40 m, 40-60 m &>60 m. The depth ranges are categorized considering prevailing water levels, depth zone of water logging, depth zone of prone to water logging centrifugal pumping depths etc.

2.4.1: District wise hydrological situation in NCT Delhi

District wise hydrological situation in NCT and a verage water table in NCT D elhi is detailed as follows

2.4.1.1Central District

Central district of NCT Delhi is located in hard rock terrain of Delhi quartzite at one end while a lluvium is underlain by D elhi quartzite at another end. N early 25 S q. K m area covered i n t he di strict w hich i s e xtending east to west, where eas tern part i s j ust terminating along Yamuna Flood Plain. The depth to water level varies from 2 m to 7 m.

2.4.1.2: North District

North District of NCT Delhi just lying all along Yamuna River covering 60 Sq.Km areas. Its 40% area is under Yamuna Flood Plain. The Southern part of the District have a thin veneer of a lluvium c over over quartzitic r ock which is a n e xtention of D elhi R idge (Strike-SSW to NNE), near Wazirabad Barrage. Some of the exploratory wells Drilled by CGWB falling in this area are Delhi University, Dhirpur, and Jagatpur.

2.4.1.3: East District

East di strict of D elhi is located in the East of Yamuna R iver and extends up t o the borders of Gaziabad and Noida ares of Uttar Pradesh. Covering a total area of 64 S q. Km. Virtually, East district of NCT Delhi is a domain lying in between two rivers i.e. Yamuna in the West to Hindon in the East (6 Km eastward from the Delhi border). The depth to water level in this district varies from 5 to 8 mbgl.

2.4.1.4: New Delhi District

New Delhi district is located centrally in the state occupying an area of 35 Sq. Km. with varied surface altitude due to Delhi Ridge. Nearly 10 sq. Km. area falls within ridge area having a height of 225 to 255 m Above Mean Sea Level (AMSL). The surface is sloping gradually towards east up to the Yamuna river course where altitude is 210 m AMSL. In the w estern pa rt of N ew D elhi di strict c overing a rea of R ashtrapati B havan, Chanakyapuri, Shantipath, South and North Avenue and Connaught Place. Ground water

in the area occurs both under water table as well as under semi-confined conditions in the alluvium. The depth to water level in the district ranges from 5 to 25 m below ground level. The depth to water level varies widely depending upon the topographic elevation; it varies from 5 to 8 m in Yamuna flood plain and increases to 10 to 25 m towards the Delhi ridge.

Figure 2.1 2:Location m ap of N ational H ydrographic M onitoring S tations i nNational Capital Territory, Delhi (CGWB, Year Book 2010-2011).

2.4.1.5: North-East District

North-East district is located east of Yamuna River and bordering to Gaziabad district in the east and Merrut district in the north of Uttar Pradesh. It covers 60 S q.Km of area. Virtually, North-East district of NCT Delhi is a domain lying in between two rivers i.e. Yamuna in the west to Hindon in the east (6 Km eastward from the Delhi border). The depth to water level in this district is 5 to 8 mbgl.

2.4.1.6: North-West District

The N orth-West di strict of N CT D elhi cove rs 440 Sq. km. area ch aracterized by unconsolidated quaternary alluvium deposits. In large part of the district the water levels are s hallow r anging from 2 t o 8m bgl, w hereas in a 1 imited a rea t owards t he nor thern border (Narela) the water levels are somewhat deeper ranging from 6 to 12 mbgl.

2.4.1.7 South District

The South district of NCT Delhi covers 250 Sq. Km. of area of which 45.2 Sq. Km area shows mountainous undulating terrain exposed with Delhi quartzite. The district is also characterized by a s aucer shaped vast al luvium field in the c entral p art of the district popularly known as Chattarpur Basin.

The depth to water level varies widely in this district and is ranging from 8 m to 65 m. In the eastern tract of the district where Yamuna Flood P lain oc cur, depth to water level varies from 8 m to 22 mbgl but in rest of the area it ranges from 30 to 65 mbgl.

2.4.1.8 South-West District

The S outh-West di strict of N CT Delhi covers 420 S q. km . M ajority of t he a rea characterized by unconsolidated quaternary alluvium deposits and about 18 Sq. Km area is covered by denudation hills especially in the eastern part of the district. In major part of the district the depth to water level ranges from 5 t o 28 mbglwhere as in rocky area which are lying in the eastern part of the district (Central Delhi Ridge) the depth to water level is in the range of 22 m to 50 m.

2.4.1.9 West District:

West di strict i s oc cupied by unc onsolidated Q uaternary a lluvium unde rlain by Precambrian meta-sediments of Delhi S ystem. Quaternary alluvium comprises of s and, clay, silt, gravels/pebbles, and kankars. The depth of water level varies in the district, 2 m to 15 m.

A HOLISTIC MODEL OF SEISMIC HAZARD MICROZONATION

On the ba sis of m ethodology of M icrozonation, aholistic model e volved f or microzonation i n I ndian c ontext w hile e xperimenting m icrozonation of J abalpur and Seismic Hazard Microzonation of NCT Delhi on 1:50000 scale has been adopted for the present study of microzonation of Delhion 1:10000 scale (Figure3.1). A simple flow sheet is s hown i n figure 3.2. To a chieve the objective of M icrozonation d efined a bove, the model ha s three work c omponents vi z. ' Source c haracterization', ' Ground characterization', 'Site r esponse s tudies- experimental and numerical modeling'. These three s tudy c omponents f inally de fine ha zard level and its na ture at s urface. The Microzonation e ndeavor pr oceeds in three l evels with hi erarchy of i nput c omponents, precision level, and s cale of pr esentation. This model has been discussed by the expert groups in the meetings of Jabalpurand Delhi microzonation and presented in severalfora (Shukla 2006, 2007, 2011). The model is also in agreement with the process of seismic microzonation s tudies a dopted by di fferent g roups f or S eismic m icrozonation and also in agreement with international practices.

As enumerated a bove the s eismic m icrozonation i nvolves handling of 1 arge datas ets generated at sources of varied specializations with different semantics and complex coding. The problem is further rendered complex as the expectations are widely different for specialists and common end user. In this regard, integration of data in GIS base and evolving Seismic Hazard and Risk Information System (SHIS) for urban agglomerations is emphasized.

In t he pr esent s tudy, t he pr ogrammes o f "S ource Characterization", "Ground Characterization" and Site response study have been designed keeping in view the issues enumerated above.Multi-thematic maps pertaining to 'Geoscientific', 'Geotechnical' and 'Site-Response' characterizations have been generated. Liquefaction study has also been carried out and map at different depths below ground surface have been generated. These thematic m aps ha ve b een i ntegrated a ssigning di fferent r anking of s ignificance. Following this hierarchical integration in a GIS base, seismic microzonation map of NCT Delhi on 1:10,000 scale has been evolved.

A HOLISTIC MODEL OF SEISMIC HAZARD MICROZONATION

On the ba sis of m ethodology of M icrozonation, aholistic model e volved f or microzonation i n I ndian c ontext w hile e xperimenting m icrozonation of J abalpur and Seismic Hazard Microzonation of NCT Delhi on 1:50000 scale has been adopted for the present study of microzonation of Delhion 1:10000 scale (Figure3.1). A simple flow sheet is s hown i n figure 3.2. To a chieve the objective of M icrozonation d efined a bove, the model ha s three work c omponents vi z. ' Source c haracterization', ' Ground characterization', 'Site r esponse s tudies- experimental and numerical modeling'. These three s tudy c omponents f inally de fine ha zard level and its na ture at s urface. The Microzonation e ndeavor pr oceeds in three l evels with hi erarchy of i nput c omponents, precision level, and s cale of pr esentation. This model has been discussed by the expert groups in the meetings of Jabalpurand Delhi microzonation and presented in severalfora (Shukla 2006, 2007, 2011). The model is also in agreement with the process of seismic microzonation s tudies a dopted by di fferent g roups f or S eismic m icrozonation and also in agreement with international practices.

As enumerated a bove the s eismic m icrozonation i nvolves handling of 1 arge datas ets generated at sources of varied specializations with different semantics and complex coding. The problem is further rendered complex as the expectations are widely different for specialists and common end user. In this regard, integration of data in GIS base and evolving Seismic Hazard and Risk Information System (SHIS) for urban agglomerations is emphasized.

In t he pr esent s tudy, t he pr ogrammes o f "S ource Characterization", "Ground Characterization" and Site response study have been designed keeping in view the issues enumerated above.Multi-thematic maps pertaining to 'Geoscientific', 'Geotechnical' and 'Site-Response' characterizations have been generated. Liquefaction study has also been carried out and map at different depths below ground surface have been generated. These thematic m aps ha ve b een i ntegrated a ssigning di fferent r anking of s ignificance. Following this hierarchical integration in a GIS base, seismic microzonation map of NCT Delhi on 1:10,000 scale has been evolved.

Figure 3.1: A Holistic Model of Seismic Microzonation adopted for NCT Delhi

Figure 3.2: Flow sheet for model adopted for Seismic Hazard and Risk Microznation of NCT Delhi.

GENERAL THEMATIC MAPS AND GEOLOGICAL MAPPING OF NCT DELHI

4.1 BASE MAP (Toposheets)

The project specific base map on 1: 10,000 scale has been generated by Survey of India (SOI). The present state of Delhi with its 9 districts (National Capital Territory) occupies an a rea of about 1485 s q km s preading be tween L at $28^{0}24'$ 01'' N& $28^{0}53'$ 00'' N and Long 76 $^{0}50'$ 24'' E& 77 $^{0}20'$ 37'' E is r epresented i n 75 Toposheets on 1:10000 s cale. These toposheets ha ve been us ed f or field ba sed s tudies a nd g eneration of di fferent thematic & product maps. Index map of NCT Delhi defining different no. of toposheets is presented in Figure 4.1 a sample map of one toposheet is attached as Map-4.

Figure 4.1: Index map of NCT Delhi defining different no. of toposheets

4.2 SEISMOTECTONIC ATLAS

As detailed in Chapter -2, while reviewing seismotectonics of the region, Delhi is located on the crustal ramp with basement rocks of Delhi Supergroup, bounded by two regional faults viz Mahendragarh- Dehradun Fault in the west and Great Boundary Fault in the East. The ramp trending NNE-SSW across 'fore deep', is juxtaposed to Himalaya thrust belt. Thus, the seismic vulnerability of built environment of Delhi need be examined *vis-a-vis* high f requency gr ound m otions due t o e vents e ndemic t o f aults of P eninsular Domain and also due to frequency content of attenuated events with source zone in thrust domain of H imalayas. F ault l ines of c onsequence in the dom ain a re (i) M ahendragarh Fault, (ii) Great Boundary Fault (iii) Moradabad Fault and (iv) Sohna Fault.

Two Seismotectonic m aps (one for l arge environs c aused by gr aticules L ong $74^{0} - 81^{0}$ N& Lat $25^{0} - 33^{0}$ E and other for closer domain around Delhi bound Long $76^{0} - 78^{0}$ N& Lat $28^{0} - 30^{0}$ E) ge nerated from S eismotectonic A tlas of G SI are shown as map 5 & 6. Seismic dom ain i s c haracterized i nto ' provinces/blocks' a nd s eismogenic line s are delineated f or h azard e valuation. These m aps have be en us ed f or d evelopment of seismotectonic model for Probabilistic Seismic Hazard Analysis (PSHA).

4.3 BEDROCK DEPTH MAP

Bedrock depth map generated by Central Ground Water Board (CGWB) on integrating the exploratory data on drill holes and geophysical studies has been considered. A few bore holes drilled for delineating bed rock in the gap areas have alsobeen used to update the bed rock depth map. The map forms the basis to delineate zones of (i) exposed rocky domain – the ridge and its extension, (ii) western domain of deep lacustrine/alluvial and subordinate aeolian fill, (iii) Structurally controlled closed basins (*e.g.* Chhattarpur basin) (iv) Semiclosed basin of Central Delhi with opening to the East and (v) Eastern domain of deep alluvial fill – Khadar. The bedrock depth configuration brings about possibilities of a ccentuation of hazard due to increased amplification and duration ow ing to surface waves and their constructive interference referred to as (a) B asin effect and (b) B asin Margin effect. The bed rock depth map is shown as Map- 7.

4.3.1 Basement Topography of NCT Delhi

The basement topography of NCT, Delhi is highly uneven depicting the presence of subsurface ridges and valleys because of folding of the geological formations during the Pre-Cambrian and s ubsequent periods. The thickness of unconsolidated s ediments towards east of the ridge gradually increases away from the ridges, with the maximum reported thickness being 170 m. In the South-Western, Western, and Northern parts of the area, the thickness of sediments is more than 300 m except at Dhansa where the bedrock has been e ncountered a t 29 7m be low l and s urface. I n C hattarpur b asin, the maximum thickness of sediments is 116 m. The nature of bedrock topography in different parts of NCT, D elhi is r endered une ven due t o e xistence of s ub s urface r idges. T hickness of alluvium overlying the quartzites i ncreases a way from the out crops. The thickness of alluvium is 300 m or more in most parts of South West, West, and North West districts. The de pth t o b ed r ock is w ithin 30 m on t he east s ide of t he r idge with a gr adual downward s lope t owards r iver Y amuna. O n t he w est of r idge ne ar Mall r oad a nd VikramadityaMarg, the depth to bed rock varies from 1 to30 mbgl. Further west of it and East of Najafgarh drain, there is a sudden increase in depth to 100 m. Near Sabjimandi, Rani J hansi R oad, Aram ba gh, P aharganjChandaniChowk a nd S adar B azaar areas, thickness of alluvium is of the order of 10 to 20 m whereas near Roshanara Garden the thickness is about 200 m.

In the Central part of the city area near Dayabasti railway station, Karanpura, Patel Nagar Railway Station, the bedrock occurs within 30 m depth. But a little east of Karanpura, in DCM C hemical works, the be drock has not be en touched down to a drilling depth of 182.88 m. Such sharp and sudden change in thickness of alluvium may be due to faulting. In the I rwin H ospital, Delhi G ate, Daryaganj, Vijay Chowk, and P usa road areas the depth to bedrock varies from 5 t o 10m bgl. In LalQuila and Rajghat areas the depth to bedrock varies be tween 40 t o 60m bgl. In S hantivan a rea be drock i s e ncountered a t a depth of 23m bgl. In NanglaMachi and Zoo c omplex, be drock exposures are present on surface. In Okhla vi llage be drock i s e xposed o n s urface w ithin the J amiaMiliaIslamia campus. The thickness of alluvium is about 30 m at rail Bhawan and is about 100 to 150 m around India Gate. In Trans Y amuna area the thickness of alluvium varies from less than 20 (near Kailash colony) to more than 150 m away from Yamuna. In Usmanpur area bedrock i s e ncountered a t a de pth o f a bout 60 m . I n S onia V ihar area b edrock i s encountered at a de pth o f 20 m bgl. In C hattarpur ba sin of M ehrauli bl ock, the a lluvial thickness varies from a few meters near periphery to 115m around Satbari bund.

4.3.1.1: Bedrock depth inCentral district

Central district of NCT Delhi is located in hard rock terrain of Delhi quartzite at one end while alluvium is underlain by D elhi quartzite at another end. N early 25 S q. K m area covered i n t he di strict w hich i s e xtending east to west, where eas tern part i s j ust terminating along Y amuna Flood Plain. Depth to be drock in the eastern part is ranging from 10 to 60mbgl. In the western part some of the rock exposures of Delhi ridge are also seen, sporadically covering 1.91 Sq.km area.

4.3.1.2: Bedrock depth in North district

North District of NCT Delhi just lying all along Yamuna River covering 60 Sq.Km areas. Its 40% area is under Yamuna Flood Plain. The Southern part of the District have a thin veneer of a lluvium c over over quartzitic r ock which is a n e xtention of D elhi R idge (Strike-SSW to NNE), near Wazirabad Barrage. The slope of the surface in the district is towards south by 0.40 m /km, but at the place of concealed Delhi Ridge it gets elevated. Due to this reason it forms a depression at the northern part of the upl and area of the ridge l eading t o w ater l ogging c onditions. S ome of t he e xploratory w ells D rilled by CGWB falling in this area are Delhi University, Dhirpur, and Jagatpur encountered with bed r ock at the depth of 32m, 28m, and 167m respectively. The be drock encountered have suffered moderate to high weathering in this area.

4.3.1.3: Bedrock depth in East district

East di strict of D elhi is loc ated in the East of Yamuna R iver and extends up t o the borders of Gaziabad and Noida ares of Uttar Pradesh. Covering a total area of 64 S q. Km. Virtually, East district of NCT Delhi is a domain lying in between two rivers i.e. Yamuna in the West to Hindon in the East (6 Km eastward from the Delhi border). The basement rock condition in East district area is moderately uneven with gentle slopping towards East. It is unlike from western flank of NCT Delhi. At Ghazipur, Kalyanpuri and Mayur Vihar a mound like basement rock prevails in the depth range of 54 to 79 m bgl. The basement rock situation around Yamuna flood plain in East Delhi District is ranging from 28 to 204 mbgl. Especially around Akhsardham temple it ranges from 88 to 120 m.

4.3.1.4: Bedrock depth in New Delhi district

New Delhi district is located centrally in the state occupying an area of 35 Sq. Km. with varied surface altitude due to Delhi Ridge. Nearly 10 sq. Km. area falls within ridge area having a height of 225 to 255 m Above Mean Sea Level (AMSL). The surface is sloping gradually towards east up to the Y amuna river course where altitude is 210 m AMSL. The sub-surface configuration of N ew Delhi is different at various places, the western part which is adjoining to Delhi ridge is characterized by marginal alluvium of 0 to 30 m thickness overlain on weathered and fractured quartzite rocks (Delhi Ridge). The extreme eastern part of New Delhi District bounded by river Yamuna where a domain of Yamuna Flood Plain exists in a linear fashion along river Yamuna.

4.3.1.5: Bedrock depth inNorth-East district

North-East district is located east of Yamuna River and bordering to Gaziabad district in the east and Merrut district in the north of Uttar Pradesh. It covers 60 S q.Km of area. Virtually, North-East district of NCT Delhi is a domain lying in between two rivers i.e. Yamuna in the west to Hindon in the east (6 Km eastward from the Delhi border).

Basement r ock c ondition a long t he Y amuna F lood P lain i n this di strict i s s hallower because D elhi cent ral ridge w hich i s r unning N NE t o S SW di minishes a t W azirabad Barrage and pr otruding f urther i n t he s ame di rection r esulting t o s hallower de pth of basement c ondition i n s ub-surface-horizon. I n t his di strict t he de pth i s r anging f rom 54mbgl (Mandoli) t o 6 7mbgl (Usmanpur). F urther e ast t he d epth of basement r ock increases.

4.3.1.6: Bedrock depth in North-West district

The N orth-West di strict of N CT D elhi cove rs 440 Sq. km. area ch aracterized by unconsolidated qua ternary a lluvium de posits. S o f or 250 m de pth ha s been e xplored without e ncountering be d r ock. T he expected d epth of be d r ock i s a bout 300 m or beyond. Thick pile of alluvium over the basement rock possesses varied sediment strata in an alternate fashion of geological setting.

4.3.1.7: Bedrock depth in South district

The South district of NCT Delhi covers 250 Sq. Km. of area of which 45.2 Sq. Km area shows mountainous undulating terrain exposed with Delhi quartzite. The district is also characterized by a s aucer shaped vast al luvium field in the c entral part of the district popularly known as C hattarpur B asin. V irtually this is valley fill deposit, the alluvium thickness varies from 0.0 m to 140.00 m .bgl (Satbari village), be low which quartzitic basement rock prevails. Some of the villages like Chattarpur, Gadaipur, Mandi, Ghitorni, Ayanagar, FatehpurBeri and Satbari fall within this area. The area across southern Delhi Ridge which falls in South District namely Hauj-khas, Saket, Khanpur, Pushpvihar, Lal-kunwa and S aritavihar are und erlain by m arginal a lluvium de posits w ith a t hickness ranging from 60 m to 94 m below which Quartzitic basement rock prevails.

The bor e hol e constructed i n Q uartzites (Jaunapur, A sola, M andiand T ughlakabad) reveals that moderately fractured zones are prevalent in the depth of 30 m to 90 m and their fractured density gradually decreasing as depth increases. The weathered zone is found at every place above hard rock but their thickness varies from place to place.

4.3.1.8: Bedrock depth inSouth-West District

The S outh-West di strict of N CT Delhi covers 420 S q. km . M ajority of t he a rea characterized by unconsolidated quaternary alluvium deposits and about 18 Sq. Km area is covered by d enudation hills especially in the eastern part of the district. Exploration upto a depth of 302 m was done to study the hydrogeological condition. The bed rock was e ncountered a t di fferent d epth i .e. i n Dhansa (297 m), P indwalakala (300 m), Toghanpur (298m) and Jhul-jhuli(251m). Thick pile of alluvium over the basement rock possesses varied nature of sediment strata in an alternate fashion of geological setting.

4.3.1.9:West District

West di strict i s oc cupied by unc onsolidated Q uaternary a lluvium unde rlain by Precambrian meta-sediments of Delhi S ystem. Quaternary alluvium comprises of s and, clay, silt, gravels/pebbles, and kankars.

4.4 GROUND WATER TABLE MAP

Soil properties are altered by moisture content. Liquefaction potential of the soil is also controlled by level of the water at particular site. Ground water level is therefore one of the pa rameters considered f or e valuating di fferent s oil pr operties/parameter a nd t heir effect on di fferent c omponent of s eismic hazard microzonation. Central Ground W ater Board (CGWB), a subordinate office of the Ministry of Water Resources, Government of India, i s t he National Apex A gency entrusted w ith t he r esponsibilities of pr oviding scientific inputs for management, exploration, monitoring, assessment, augmentation, and regulation of ground water resources of the country. Monitoring of ground water levels is one of the major activities of the CGWB, through a network of ground water observation wells c omprising bot h l arge di ameter ope n w ells a nd pur pose-built bor e/tube w ells

(piezometers). As on 31.03.2011 a network of 14966 gr ound water monitoring wells spread all over the country is used for monitoring of ground water level in different parts of the country. To monitor gr ound water level in different parts of NCT, C GWB has setup 162 ground water monitoring systems, which includes 25 large diameter open wells (DW) and 137 pu rpose-built bore/tube wells (piezometers) PZ. Ground water levels are being measured four times a year during January, April/ May, August and November. On the ba sis of d ata ge nerated from t his ne twork, CGWB ge nerate di fferent r eports a nd maps.

The post monsoon seasonground water map/data of November 2010, which provide the critical s ituation of gr ound water ta ble in NCT D elhi in r espect of i nduced s eismic hazard, has been used for the liquefaction study (Map 8). As per the year Book of CGWB for 2010-2011, w ater t able i n M ay 2010 (pre m onsoon) a nd N ovember 2010 (post monsoon) are detailed below:

4.4.1 Depth to water level in May 2010 (Pre Manson)

The Depth to water level recorded in NCT Delhi during May-2010 ranges from 1.10 to 66.70 mbgl. The total 201 station of Delhi state have been analyzed district wise where 50% wells of south district shown more than 40 m.bgl water level and 24% wells have 20 to 40 mbgl water level. In New Delhi and South-West district 62% and 53% of the wells show water levels ranging from 10 to 20 m bgl. In 50%, 40% and 50% of the wells in Central, E ast a nd N orth W est di stricts the water level ranges from of 5 t o10 m .bgl respectively. The entire Yamuna flood plain the water levels are between 2 to 5 m.

4.4.1.1 Annual Fluctuation of water level in May

The fluctuation of water level be tween May-2009 and May-2010 of Delhi state shows rise in nearly 12% of wells with respect to the previous year water level in the districts of North, North-West, New Delhi, and South. Whereas rest of the district like Central, East, North-East, South and South-West shows fall in the range of 0.24 to 8.98 m in 70% of the wells.

4.4.1.2: Decadal Fluctuation of water level in May

South and South–West districts are sharing a continuous fall in comparison to other areas. When the data of May-2010 has been compared with 10 year mean of May water level 79% of the wells indicate fall in the range of 0.01 to more than 35 m. Only 13% wells of the North-West, and New Delhi have been observed to show rising condition in the range of 0 to 2 m. The maximum fall has taken place in district of South and South-West (i.e. 7.07 to 7.38 m)

4.4.2: Depth to water level in November 2010

The Depth to water level recorded in NCT Delhi during November-2010ranges from 0.07 to 66.84 mbgl. The data from 166 stations has been analyzed district wise. 33% wells of

south district shown more than 40m bgl water level and 27% wells have 20 to 40 m.bgl water level. In South-West district 19% and 7% wells have water level between 20 to 40 mbgl and more than 40 mbgl respectively. The depth to water level of East, North-East and N orth-West di stricts ar e i n the r ange of 5 -10 m bgl i n 36%, 43% a nd 26% respectively whereas in North and South districts 36% and 23% wells are in the range of 2-5 water level respectively. The water levels of entire Yamuna flood plain are in the range of 2 to 5mbgl.

4.4.2.1:Pre-Post Monsoon Fluctuation of water level

The fluctuation of water level be tween Pre-monsoon (May-2010) and Post Monsoon (Nov-2010) of Delhi state shows 0.01 to 32.11 m rise in 88% of the wells, but some of the districts i.e. East, North, North-East and West shows a rise in the range of 0 to 4 m in 82% of the wells. Few wells of South and East district show fall in the range of 0 to 4 m.

4.4.2.2: Annual Fluctuation of post monsoon water level

The hydrograph analyses of Nov-2009 and Nov-2010 water levels of 193 wells reveals that 21% of the wells shows fall in the range of 0 to more than 4m whereas in 30% there is no perceptible change or just above than the previous year water level. The fall of more than 4 m are recorded only in South district.

4.5 GEOLOGICAL AND GEOMORPHOLOGICAL MAPPING OF NCT DE LHI ON 1:10,000 SCALE

Geomorphological mapping is being used increasingly in engineering applications, as a rapid, hi ghly c ost-effective m eans of a ssessingboth pot ential ha zards a nd r esources. A good subsurface geological map is therefore essentially required to understand variability of soil and further planning of geotechnical investigation. However, this itself is a huge task a nd nor mally a chievedthrough a f ield m apping pr ogramme, a nd i nvolves t he correctinterpretation of landforms as to their origins, material composition, and associated present-day geomorphological processes. In the geological and geomorphological studies, the near-surface signatures pertaining to the recent sedimentary deposits - alluvium, flood plains, c liffs, s lope a spects, etc c an be c omplemented by bor ehole litholog, e xploratory drill holes, surface elevation model, land-cover, and basement topography derived from vertical electrical resistivity soundings and other geophysical investigations.

Geological Survey of India (GSI) a nodal agency of government of India in geological mapping, through their concerted efforts for last several years, have prepared Geological map of NCT Delhi, which is presented on 1: 50,000 scales. This map has been digitized and us ed f or first l evel s tudy of S eismic H azard M icrozonation on 1: 50000 s cale completed by EREC in 2005(Map-9).

In carrying forward the microzonationstudy to a higher level of precision on 1:10,000 scale, it was required to geologically re-survey the area on new base map generated by SOI (scale 1:10,000) to address the following specific problems identified in first level Seismic Microzonation on 1:50000 scale (Map 3).

- 1. Mapping of Palaeochannels of Yamuna river and Fluvial Sediment Characterization in Khadar and Bela belts in Microzone-9
- 2. Mapping of structural elements with special reference to folding pattern and Fault delineation for as certaining Basin architecture in Micro zone--7 (Chhatarpur basin) and Micro zone- 8(West of Delhi Ridge),
- 3. Delineation of as sociated meta-argillites a nd hi ghly w eathered uni ts w ith R idge Quartzite and in Kohi Microzones--1&-3 (Delhi Ridge and Asola area, respectively)
- 4. Sediment characterization and delineation of strand lines in Nazafgarh and other lake domains;
- 5. Characterization of Aeolian sediment fill in Chhatarpur Basin (Microzone-7) and in reported sporadic occurrence in other domains,
- 6. Studies to delineate Pleistocene/Holocene Boundary in soft sediment cover keeping in view the importance of characterization of liquefaction.

Geological mapping of NCT Delhi on 1:10000 scale has been carried out in collaboration with Geological Survey of India (GSI). The geological mapping of a large urban complex with high scale resolution of 1:10,000 was a challenging task. Mapping on such a scale had ne ver be en a ttempted f or any of t he I ndian c ities. M oreover, hi gh de nsity urbanization in Delhi had rendered it further difficult to capture ground geological data. To win over the constraints following innovative techniques have been used.

(i) To minimize the hindering effect of the urban masking in geological data capturing, the field w ork w as supplemented with (i) a erial phot o studies based on ol d s eries photography of 1976 g eneration a vailable w ith S OI and hi gh r esolution r emote sensing data of recent origin (ii) extensive probing with exploratory drill holes. One such aerial Photograph of a small area is given in Figure 4.2.

- Figure 4.2: Aerial Photograph (Top) abandoned channel (Bottom) shifting of Yamuna River
- (ii) SOI had provided old sequential toposheets of Delhi on P rojection compatible with present t oposheets f or exercise on de lineation of (a) p alaeochannels and river migration pattern and (b) changes in the strand line of lacustrine domain.
- (iii) GSI formulated a devoted group for (a) interpretation of remote sensing da ta and generation o f phot o-interpretative map and to t ook up s pecific study f or characterization of (a) fluvial architecture in riverine domain, (b) A eolian sediments in Chhatarpur ba sin and (c) limnol ogical s ediments in Najafgarh do main. Photo interpretative map of a small area is given in Figure 4.3.

Figure 4.3: Photointerpretative map of two small areas.

- (iv)GSI a lsoformulated a de voted gr oup assisted by f ield ge ologists from Earthquake Risk Evaluation Center (EREC) for limited field survey. A few photographs collected during field survey depicting different geomorphological features are given in Figure 4.4.
- (v) Geological map of NCT Delhi on 1:10000 scale has been generated and presented in 75 Sheets overplayed on respective toposheets generated in collaboration with SoI. A small area covering one toposheet is shown asMap 10.

Figure 4.4: A few photographs collected duringfieldgeological survey depictingdifferentgeomorphological features in NCT Delhi.

4.5.1 Interpretation of geology and geomorphology of Delhi based on new maps

The N ational C apital Territory of Delhic overs a n a rea o f a bout 1484s q km. physiographically the area represents a mature topography with vast gently undul atory plains, I ow I inear r idges a nd i solated hi llocks. N E t o N NE t rending Aravalli R ange extends northwards up to Delhi and are designated as Delhi Ridge in the area. The ridge occupies the south central part of Delhi and extends up to western bank of Yamuna River as seen near Okhala in south and Wazirabaad in north-east. The general elevation of the plains varies between 213 and 305m above m.s.l. and the ridges rise 40 to 50m above the plains. Y amuna R iver f lows a cross D elhi i n a s outh-southeasterly di rection with va st flood plain, marked by a bluff of 3 to 4m on either bank as seen near Narela towards west and near B aghpat t owards east. The area t owards e ast of r idge has a gentle s lope of 3.5m/km t owards Y amuna, a nd a num ber of t ributary s treams a nd N alas, dr ain i nto Yamuna. The a rea towards west of ridge r epresenting older A lluvial P lain is mostly covered by s and dune s and has a westerly slope. All the N alas de bouching from the western flank drain into a broad inland basin described as Sahibi-Najafgarh basin. The anthropogenic activity has considerably changed the topography of the area. A number of drainage lines and natural ponds have been completely modified or obliterated.

The oldest geological unit exposed in the area belongs to Delhi Super group of Middle to Upper P roterozoic a ge w hich i s ove rlain by unc onsolidated Q uaternary s ediments comprising Older A lluvium (Late P leistocene) and Newer A lluvium (Holocene). The Delhi Supergroup comprises quartizite, gritty quartzite, arcosic grit with thin intercalation of m icaceous s chist. The m icaceous schist oc casionally c ontains c rystals of ga rnet, andalusite, and staurolite. The rocks of Delhi Supergroup are intruded by pegmatite and quartz veins. The Older Alluvium mainly comprises yellowish brown, occasionally white micaceous, medium to fine sand, silt, silty clay, clay and kankar. The kankar occurs both in the form of bedded deposits and as sporadic nodular lenses. The Newer Alluvium is restricted t o the F lood Plain of Y amuna R iver and m ainly c omprises g rey m icaceous medium to fine grained sand, intercalation of silt and clay with fine nodular kankar. In general the entire area of NCT- Delhi can be grouped into three broad ge omorphic units:

- Rocky surface, the oldest geological unit exposed in the area,
- Alluvial Plain-gently undulatory surface with rolling topography having a relief of a few meters.
- Flood Plain of Yamuna River-low lying surface.

Rocky surface

The r ocky s urface r epresents s tructurally c ontrolled r elict l inear r idges a nd i solated hillocks comprising rocks of Delhi Supergroup and isolated hills mostly occurring in the south-south c entral pa rt, a nd e xtends f rom M ahipalpur t o W azirabad i n t he nor th. Towards south of Mahipalpur the ridge gets bifurcated, one arm extends towards Mandi and f urther s outh w hile t he ot her t akes a t urn t owards s outheast a nd t raced up t o Tughlakabad-Greaterkailash, Nehru Place and Okhla. It a ttains ma ximum e levation of 318 m above m.s.l which gradually diminishes towards north where rocks are exposed on the western bank of Yamuna near Wazirabad.

Older Alluvium Plain

The gently undulatory terrain on e ither side of the rocky surface is described as Older Alluvium P lain. T his surface is separated from the Y amuna F lood P lain by a bl uff. Depending upon the morphological expressions/features this unit is further divided into different sub-units: (i) Najafgarh Older Alluvial P lain (ii) D elhi Older Alluvium P lain (iii) Maidan Garhi Plain.

The Najafgarh-Dwarka area in southwest Delhi forms an inland basin drained by S ahibi and Najafgarh drains and their tributaries such as Mundela khurd, Mungeshpur, Nangloi, and Palam n alas. The a rea i s cha racterized by very fine t extured dendritic dr ainage pattern. The gently s loping s urface, i ncluding the c overed pe diment a long the e astern flank of the ridges is characterized by the Delhi Older Alluvial Plain. The older alluvial

plane towards western and south western parts of the region is partly covered by s and zones and s andy sheets. M aidan Garhi P lane is a r elatively higher plane s urface and forms part of Chhhatarpur basin. A narrow zone of badland has formed mostly along the western margins of structural ridges due to intense development of gullies and rilles.

Flood Plain of Yamuna

The l ow l ine f lat s urface r epresenting t he f lood pl ain of Y amuna i s a n i mportant geomorphic unit which occupies north, north-east and eastern parts of D elhi. North of Narela, the width of flood plain varies from 15 to 17 km. The surface altitude varies from 213 m in northwest to 200 m in the southeast. The boundary of the flood plain is marked by a 3 to 4 m high bluff which on western bank of Y amuna extends south ward through Bhoragarh, Sanoth, K herakhurd, K herakalan, and A alamgirpur to Azadpur and reaches Wazirabad through K ingsway C amp. S outh of Wazirabad the bluff extends di rectly in southerly di rection. T he f lood pl ain i s c haracterized by a bounded channel c ut of f meanders, meanders scrolls, ox-bow lakes, crevasse splays, point bars and channel bars. Presence of a number of cut off meander suggests oscillatory shifting of river. The lakes near Bhalsawa, Kondli, and Khhichdipur are remnant of large meanders.Detailed geology and Geomorphological features covering individual sheets will further be discussed while presenting seismic microzonation maps of individual sheet.

SEISMIC HAZARD ASSESSMENT OF NCT DELHI AT ENGINEERING BEDROCK

Evaluation of S eismic Hazard a t be d rock i s t he first process of Seismic H azard Microzonation, as de scribed i n pr evious chapter, involves quantitative e stimation of ground motion parameters at a particular site at bedrock due to future earthquake of a given magnitude and epicentral distance. This requires identification and characterization of all possible sources of seismic activity and their potential for generating future strong ground motion at the site. The current ability to identify and locate all earthquake sources is a relatively recent development, particularly when compared with the time scales on which large earthquakes usually occur. The fact that no strong ground motions have been instrumentally recorded in a particular area does not gua rantee that they have not occurred in the past or that they will not occur in future. Therefore, in the absence of an instrumental seismic record, other clues of earthquake activity in the form of geological and tectonic evidence, or hi storical s eismicity are t o be considered. The s earch of geological evi dence of earthquake s ources c enters on t he i dentification of f aults a nd therefore, generation of a good s eimotectonic map around the area of study, generally around 300 to 350 km of radius (Iyengar and Ghosh, 2004; Gupta, 2005) is required to be generated along with associated records of earthquake s ince hi storical t ime(good catalogue). Two basic methodologies used for Seismic Hazard Assessment (SHA) are the Deterministic Seismic Hazard Assessment (DSHA) and the Probabilistic Seismic Hazard Assessment (PSHA) approaches.

In the Deterministic S eismic H azard Assessment (DSHA), t he s trong g round m otion parameters are estimated for the Maximum Credible Earthquake, assumed to occur at the closest possible distance from the site of interest, without considering the likelihood of its occurrence during a specified exposure period. On the other hand, in PSHA, rather than searching f or e lusive worst-case gr ound m otion, all pos sible e arthquake e vents and resulting gr ound m otions, a long w ith t heir a ssociated pr obabilities of oc currence a re considered to estimate the level of ground motion intensity exceeded with some tolerably low rate.

PSHA is an improvement over DSHA by c onsidering all possible uncertainties into the hazard estimation procedure, arising in magnitude scales; types of earthquake sources and its nature of physical processes; using various kinds of earthquake recurrence models and its intermodel or intramodel assumptions and estimation of strong ground motion using appropriate ground motion prediction equations. However, incorporation of uncertainties adds s ome c omplexity t o the procedure, but the r esulting c alculations a re m uch m ore

SEISMIC HAZARD ASSESSMENT OF NCT DELHI AT ENGINEERING BEDROCK

Evaluation of S eismic Hazard a t be d rock i s t he first process of Seismic H azard Microzonation, as de scribed i n pr evious chapter, involves quantitative e stimation of ground motion parameters at a particular site at bedrock due to future earthquake of a given magnitude and epicentral distance. This requires identification and characterization of all possible sources of seismic activity and their potential for generating future strong ground motion at the site. The current ability to identify and locate all earthquake sources is a relatively recent development, particularly when compared with the time scales on which large earthquakes usually occur. The fact that no strong ground motions have been instrumentally recorded in a particular area does not gua rantee that they have not occurred in the past or that they will not occur in future. Therefore, in the absence of an instrumental seismic record, other clues of earthquake activity in the form of geological and tectonic evidence, or hi storical s eismicity are t o be considered. The s earch of geological evi dence of earthquake s ources c enters on t he i dentification of f aults a nd therefore, generation of a good s eimotectonic map around the area of study, generally around 300 to 350 km of radius (Iyengar and Ghosh, 2004; Gupta, 2005) is required to be generated along with associated records of earthquake s ince hi storical t ime(good catalogue). Two basic methodologies used for Seismic Hazard Assessment (SHA) are the Deterministic Seismic Hazard Assessment (DSHA) and the Probabilistic Seismic Hazard Assessment (PSHA) approaches.

In the Deterministic S eismic H azard Assessment (DSHA), t he s trong g round m otion parameters are estimated for the Maximum Credible Earthquake, assumed to occur at the closest possible distance from the site of interest, without considering the likelihood of its occurrence during a specified exposure period. On the other hand, in PSHA, rather than searching f or e lusive worst-case gr ound m otion, all pos sible e arthquake e vents and resulting gr ound m otions, a long w ith t heir a ssociated pr obabilities of oc currence a re considered to estimate the level of ground motion intensity exceeded with some tolerably low rate.

PSHA is an improvement over DSHA by c onsidering all possible uncertainties into the hazard estimation procedure, arising in magnitude scales; types of earthquake sources and its nature of physical processes; using various kinds of earthquake recurrence models and its intermodel or intramodel assumptions and estimation of strong ground motion using appropriate ground motion prediction equations. However, incorporation of uncertainties adds s ome c omplexity t o the procedure, but the r esulting c alculations a re m uch m ore

defensible for use in engineering decision-making for reducing risks. PSHA thus provides a f ramework i n w hich uncertainties i n t he s ize, location, and rate of recurrence of earthquakes and in the variation of ground motion characteristics with e arthquake s ize and location can be identified, quantified, and combined in a rational manner to provide a more complete picture of the seismic hazard.

The strong ground m otion in D elhi ha s be en e stimated a t e ngineering be d r ock (Shearwave velocity about 760m/s) level in terms of spectral strong ground motion for various exc eedance r ates using Probabilistic Seismic H azard Assessment (PSHA) and considering un certainties i nvolved i n t he pr ocess. The s eismic z onation f or va rious probabilities of exceedance values in specific duration of time for strong ground motion on the engineering bed rock has been estimated based on the appropriate strong ground motion attenuation relationships. The seismotectonics modeling has been carried out for the r egion w hich is used for the pr obabilistic s eismic ha zard estimation for na tional capitalregion of Delhi.

5.1: ESTIMATION OF SEISMIC HAZARD PARAMETER

The seismic hazard assessment has been carried out for Delhi using Probabilistic Seismic Hazard Analysis (PSHA). The various steps of study for estimation of seismic hazard parameters are described in this section in detail. The steps described are earthquake catalogue, treatment of s eismicity with r espect to homogenization, de clustring, completeness analysis, estimation of hazard p arameters na mely, a, b, M_c and M_{max} , Strong motion estimation, selection of attenuation relationships and finally assessment of seismic hazard in Delhi using logic tree approach. Regional geological and tectonic setups of the region, around Delhi and maps described in Chapters 2 & 4 have been used for seismotectonic modeling of the region.

5.1.1: Earthquake data (Catalogue)

The present study has been carried out for Northern India region (Latitude $24^{0} - 31.5^{0}$ N and Longitude $74^{0} - 81.5^{0}$ E) with Delhi as its centre. Earthquake data have been plotted on the map showing tectonic features of the region, based on regional seisotectonic setup discussed in previous chapters and shown as Figure 5.1. The data have been compiled from national data baseof India Metrological Department(a nodal agency for earthquake monitoring in India), International Seismological Center (ISC, UK), and United States Geological Survey (USGS, USA) (International agencies). Information on earthquakes in India and neighborhood, available in various national and International publications and journals, has also been used. The earthquake catalogue has been compiled from historic to present time (1720-2004). The historical part of the catalogue covers a period from 1720 to 1956 and is extracted from Indian Society of Earthquake Technology (ISET) catalogue (1983) and Oldham (1883). After 1960 systematic recording of earthquakes were carried out, but the reporting of events have been done using different magnitude scales.

Parameters of historical earthquakes, including magnitudes were determined only from macro-seismic data. Magnitude assigned for these events was done using literature survey of different journals and publications (ISET, 1983; Iyengar, 1999; Bilham, 2004). The catalogue contains 1, 26, 21, 28, 88, 180, 344 and 751 earthquakes in the magnitude range as M > 7, 6 < M < 7, 5 < M < 6, 4 < M < 5, 3 < M < 4, 2 < M < 3, and 1 < M < 2, respectively. A total of 1411 earthquakes could be listed from various sources in the catalogue prepared for the seismic hazard assessment. The epicenters of these earthquakes are plotted in Figure 5.1.

5.1.2: Seismotectonic Modelling

The earmarking of seismogenic sources in a region based on the association of prevalent seismicity to the local and r egional ge ological and t ectonic f eatures c onsidering t he different geological and geophysical anomalies is termed, in general, as seismotectonic modeling of the area. Statistical and geological evidence are primarily used to define the geographical de marcation of s eismic s ource zones and seismically activefaults. These geographical features can be modeled as point, line, or area sources. Seismicity related to a specific source zone is then represented by a recurrence model consisting of a random process describing the distribution of magnitude of earthquakes in a given period of time. In m ost c ases, uni form pr obability di stributions a re a ssigned t o e ach s ource z one, implying that earthquakes are equally likely to occur at any point within the source zone. The probability of exceeding a given level of ground motion parameters at least once in a given num ber of ye ars a t a gi ven s ite i s f inally obt ained t hrough ground m otion prediction equations. The zone less seismic-hazard approach suggested by Frankel (1995) has also been used in many investigations for seismic hazard assessment. This approach is useful especially for regions where demarcation of distinct seismic-zone boundaries is difficult due t o a poor unde rstanding of t ectonic s ettings. The m ethod has t he disadvantage of not considering the physical seismogenic sources present in the region.

5.1.2.1 Seismic Sources Zones

In case of the present study area which is covering Northern Indian region, due to its high seismicity, the seismogenic sources are demarcated to a good extent and those methods which make us e of the physical sources by c onsidering their geometry and individual behavior of e arthquake oc currence should b e pr eferred. Therefore, Seismotectonic Province Method has been used and for carrying out the seismic hazard assessment of Delhi, the seismotectonic modelling has been carried out with the aim to divide the study area (Latitude 24°-31.5° N and Longitude 74°-81.5° E) within a 350 km radiusaround Delhi, into various seismotectonic segments i.e., into various seismogenic zones having distinct cha racteristics.Based on the ge ophysical and geological characteristics of the seismicity,discussed i n Chapter-2&4, the a rea i s di vided into f our zones na mely Himalayan Z one (part of Himalaya falling within 350km from the center of D elhi), Delhi-Haridwar Ridge Zone, Moradabad Fault Zone and Rajasthan Great Boundary Fault

zone.Seismotectonic map of the region around Delhi showing all earthquake events and its epicenters is given in Figure 5.1.

Figure 5.1: Seismotectonic m ap of t he r egion a round D elhi s howing a ll e arthquake events and its epicenters

5.1.2.1.1: Seismogenic Zone I: Himalayan Zone (HIM)

Himalayan mountain belt setup is broadened about 2400 km long in east-west direction with variable width of 230 to 320 km (Argand 1924; Dewey and Bird 1970; Srikantia and Bhargava 1998). The part of Himalayan mountain belt, which is within 350km of radius from t he c enter of D elhi onl y falls in t he c onsidered a rea (Latitude $24^{\circ}-31.5^{\circ}$ N and Longitude $74^{\circ}-81.5^{\circ}$ E) for s eismotectonic m odelling and e arthquakes o ccurred in t his part of H imalayan mountain belt ha ve onl y b een c onsidered for t he s tudy. T hus t he Himalayan Zone (HIM) from t he point of view of t his s tudy is not r epresenting t he seismicity of entire Himalayan mountain belt.

This part of Himalayan s eismogenic z one is the most s eismically active zone s in the considered area of the study. The reported maximum magnitude experienced in this zone is 6.9, which occurred on 29th March, 1999 near Chamoli. This earthquake left 70 persons dead a nd a pproximately one t housand hous es da maged. S ince 1720 t his r egion ha s experienced about 370 e arthquakes of which 344 are below magnitude 5 and contain 18 in the magnitude ranges of 5 < M < 6, and 8 earthquakes in between magnitude ranges of 6 < M < 7. The main seismogenic features in this zone are MFT (concealed at places), MBT, and MCT.

5.1.2.1.2: Sismogenic Zone II: Delhi-Haridwar Ridge Zone (DHR)

The D elhi-Haridwar R idge z one is c onsidered t o r epresent s hallow N E-SW t rending extension of the Delhi Foldbelt towards the Himalayas, which has controlled the western limit of the G anga basin, and the underlying s edimentary s equence probably thins out towards this ridge. Delhi-Hardwar R idge lies towards the northwest of the G anga basin and is c onsidered t o be a pr olongation of t he N NE-SSW di rected Peninsular r ock (Aravalli) as a horst delimited by f aults. Since 1720 the r egion has experienced s ome 894earthquakes of which 890 are below reported magnitude 5. There are 3 earthquakes of magnitude 5 < M < 6. There is one earthquake registering magnitude 6.5 which occurred on July 15, 1720.

As in t he pr esent s tudy, the S eismotectonic P rovince M ethod has be en considered, individual faults such as the Mathura fault zone postulated by Srivastavaand Somayajulu (1966)has been included in a larger seismogenic source zone i.e., Delhi-Haridwar Ridge. This zone probably controlled the course of the Yamuna River in the tract in which the river follows a course parallel to the fault zone.

5.1.2.1.3: Seismogenic Zone III: Moradabad Fault Zone (MOR)

The M oradabad f ault z one t rends ge nerally a long N E-SW di rection. Since 1720 t he region has experienced about 45 earthquakes of which 42 are below magnitude 5. There is 1 earthquake in the region generating 5 < M < 6 and 2 earthquakes registering M > 6.0, respectively in this region. The earthquake of Oct. 10, 1956 i s the largest instrumentally recorded earthquake near this fault. A magnitude of 6.4 was assigned to the event on the basis of instrumental records by IMD with its epicenter at latitude 28.15° N and longitude 77.67° E. Rothe (1969) lists this event with epicenter at latitude 28.2° N, longitude 77.3° E with origin time 15 h, 31 m, 36 sec (GMT). This earthquake was felt in a very large area and w as r esponsible f or da mage t o bui Idings i n w hich 23 pe rsons pe rished i n Bulandshahar and some were injured in Delhi. The earthquake of Aug. 27, 1960 with its epicenter at latitude 28.2° N and longitude 77.4° E is generally referred to as the 1960 Delhi earthquake which had a magnitude 6.0 and reported depth of focus as 109 km. The earthquake was felt at K anpur and Jaipur. Minor property damage and injuries to about 50 persons were reported from Delhi.

5.1.2.1.4: Seismogenic Zone IV: Rajasthan Great Boundary Fault Zone (RGBF)

Rajasthan Great B oundary Fault (RGBF) zone is a w ell-defined fault which r uns f or about 400 km NNE-SSW to NE-SW as a major dislocation zone in Rajasthan. The RGBF represents a 10 -20 km wide zone and demarcates the interface between the Vindhyan Supergroup of r ocks on the e astern s ide and the A ravalli Supergroup of r ocks on t he western side.

The earthquake of Aug. 31, 1803 near Mathura is associated with this zone in addition to its as sociation with the Mathura fault zon e. This earthquake was felt as far away as Calcutta and caused extensive f issures in fields near M athura t hrough which water gushed out. Iyengar (2000) and Tandon (1953) noted damage to the Qutub Minar during the 1803 earthquake in Delhi. The epicentral location of this earthquake indicates that the earthquake could be due to movement along the postulated Mathura fault. Since 1720 the region has experienced about 18 e arthquakes of which 14 a re below magnitude 5. There are 2, 1 and 1 e arthquakes in the range of 5 < M < 6, 6 < M < 7 and M > 7.0, respectively.

5.1.2.2 Line and Area Sourc Models

The l ine s ource m odel and the ar eal s ource m odels f or t he s eismogenic s ources as observed in the seismotectonics described above are shown in Figure5.2 (left panel) and Figure5.2(right pa nel). Hereafter, the s eismic s ource zones a re a bbreviated as D HR (Delhi-Haridwar R idge), H IM (Himalaya), MOR (Moradabad), and RGBF (Rajasthan-Great-Boundary Faults).

Figure 5.2 Left panel: Line source model of the region, right panel: area source model of the region

5.1.3: Homogenization of Earthquake Catalogue

One of the problems while carrying out seismic hazard assessment could be related to the necessity of utilizing a long, 'nonuniform' earthquake history; having different intensity or magnitude s cales for varying s ize of the events. S o a more or less uniform, entire earthquake history has to be defined by the aid of some conversion relationships and a

more s tructured analysis s hould c onsider t he unc ertainty a ssociated w ith t hese conversions relations.

The em pirical r elationships be tween different m agnitude s cales ar e therefore, of paramount importance for conversions to be carried out for homogenization of seismicity catalogues for further s tudies r elated to seismological s tatistics and for seismicity and amplitude studies.

Using the data s et from ISC, USGS, and IMD only 61, 101 a nd 30 e vents c ould be compiled having t he m agnitude pa irs gi ven a s M_b & M_s, M_L & M_b and M_L& M_s, respectively. T he data s ets us ed f or a nalysis c ontain l ess t han 15 e vents ha ving t he magnitudes gi ven f or both s cales M_L, M_s, M_b with M_w. The e arthquakes us ed f or t he present study are shallow ones with depth \leq 70 km because of their greater c oncern in seismic hazard analysis. The historic events, for which only intensities are assigned for their size, were not considered for developing the relationships between the magnitude scales.

Since both the magnitudes to be regressed for relationship contain inherent errors, it is necessary to consider these errors in regression analysis for developing the relationships. While estimating the magnitude of any earthquake event there is always some inherent variability that the me asurement is bias, called a leatory randomness. For establishing relationship between two different types of the s cales it is necessary, therefore, to consider both scales having the different aleatory variables. An endeavor has been made to quantify the uncertainty due to magnitude conversions to be used for seismic hazard analysis. The relationships between various magnitude scales have been developed.

The data for developing such relationships between two magnitudes scales is generally very l ess and gi ves a selected s ample c hoice to obt ain a r elationship be tween t wo magnitude scales for the r egion under study. F or quantifying variability while making relationships be tween two scales, it is important to gi ve both magnitude scales e qual importance and variability of each scale should be taken into analysis. Since both types of magnitudes, as reported in catalogue, are having errors, the usual meaning of dependent and independent variable fails and the variables can be written as $Y_i = \eta_i + \varepsilon_i$ and $X_i = \xi_i + \delta_i$. It is assumed that a straight-line r elationship between the true but unobserved va lues η_i and the n unknown pa rameters ξ_i . Based on the a bove and substituting for ξ_i , Y i can be written as $Y_i = \beta_0 + \beta_1 X_i + (\varepsilon_i - \beta_1 \delta_i)$. By fitting the two scales using usual least square fit there will be biased estimates in slope parameter of fitted equation (Draper and Smith, 2005).

All the four cases, namely fit X to Y, equal variance, univariate variance, and specific variance r atiohave be en a pplied to regress the da ta on given m agnitude s cales. The
relationships obtained are given in following Table 5.1 whereas the equation is written as Y = aX + bin w hich f irst variable (magnitude values) is de fined as X - coordinate and second variable (magnitude values) as Y- coordinate.

Figure 5.3, 5.4, and 5.5 show bivariate fit for M_{b} - M_{s} , M_{L} - M_{b} , and M_{L} - M_{s} , for all the four cas es. The comparison reveals that the error consideration in both the magnitude types to be r egressed f or obtaining the r elationship is of paramount importance and should be c omputed w hile doi ng hom ogenization of m agnitude da ta i n e arthquake catalogue, which in future are to be used for seismic hazard analysis.

	$I - a\Lambda^{-}$	FOIOI IOU	r cases.							
	Line	Linear Fit Fit X to Y Equal Variance				Univ	ariate	Specific		
							Vari	ance	Variance Ratio	
	a	b	a	b	a	b	a	b	a	B
M_b - M_s	1.15	-1.08	1.65	-3.37	1.46	-2.51	1.38	-2.12	1.34	-1.98
$M_L - M_b$	0.59	1.82	0.85	0.81	0.65	1.55	0.70	1.37	0.85	0.81
$M_{L}-M_{s}$	0.83	0.43	1.32	-1.68	1.06	-0.56	1.05	-0.50	1.17	-1.03

Table 5.1: Empirical relationships between different magnitude scales of the formY = aX + bfor four cases.

Figure 5.3: Bivariate Fit of M_band Ms

Figure 5.4: Bivariate Fit of M_L and M_b

Figure: 5.5 Bivariate Fit of M_L and M_S scale

Finally the regression as per case IV has been applied to data and the relationship thus obtained for M_b - M_s , M_L - M_b and M_L - M_s are as follows (Joshi and Sharma, 2006).

 M_b-M_s : Variance ratio (2.352) $M_s = 1.34M_b-1.98$ (5.1)

M_L - M_b : Variance ratio (0.001)	$M_b = 0.85 M_L + 0.81$	(5.2)
M _L - M _s : Variance ratio (0.441)	$M_{\rm S} = 1.17 M_{\rm L} - 1.03$	(5.3)

The pr esently obt ained r elationship has been c ompared w ith G utenberg and R ichter (1956), Bath (1968), Marshal (1970) and Ameer (2005) in Figure 5.6 for $M_b - M_s$ Scale, with G ibiwioz (1972) for $M_b - M_L$ Scale in Figure 5.7 and with Gutenberg and R ichter (1956b) for M_s - M_L Scale in Figure 5.8.

The c omparison of t he de veloped r elationships be tween M_b, M_s and M_L using t he bivariate orthogonal curve fitting with known variance ratio for the present study matches well w ith t he r elationships de veloped by M arshal (1970) and A meer (2005) in l ower range of magnitudes, while for higher range of magnitudes it matches with Gutenberg and R ichter (1956) r elationship. I n t he m iddle r ange of e arthquake magnitudes t he relationship is matching with Marshal (1970) relationship (see Figure 5.7, 5.8 and 5.9). In the higher range of earthquake magnitudes the relationship shows lower values than the other de veloped relationships. I n M_b–M_L Scale t he de veloped relationship show l ower values in all ranges of earthquake magnitudes as compared with relationship developed byGibiwioz (1972) a nd f or M_s –M_L Scale the r elationship is a lmost matching with Gutenberg and Richter (1956b) relationship in lower and middle range.

Figure 5.6: Comparison between M_b –M_S Scale

Figure 5.7: Comparisons between M_b –M_L Scale

Figure 5.8: Comparison between M_S – M_L Scale

5.1.4 Declustering of the Catalogue

The pr obabilistic s eismic ha zard as sessment f ollows the basic s tatistical the ories in which the samples are considered as mutually exclusive. The seismicity reported for a region contains the earthquake events along with their foreshocks and aftershocks. The foreshocks and aftershocks, being dependent on the main event, and should therefore be deleted from the catalogue before carrying out any statistical and probabilistic analysis.

Figure 5.9 Declustered events for the region shown with different coloures

To separate the dependent from the independent seismicity, the earthquake catalogue has been de clustered. T he d ecluster a lgorithm us ed i s ba sed on R easenberg (1985). T he declustring found 18 c lusters of earthquakes; A tot al of 25 dependent events (out of 1411). The map window shows now 1386 events with magenta colour for the clusters. Figure 5.9 shows the results of the declustering process.

5.1.5 Completeness Analysis of Seismic Data

A method proposed by Stepp (1972) has been applied to determine the interval class over which that class is homogeneous. To analyze the nature of the completeness of the data sample i n detail, earthquakes are gr ouped i n s everal m agnitude classes and ea ch magnitude class is modelled as a point process in time. For this analysis the number of earthquakes per decade were grouped in four magnitude ranges, 1.1 < M < 2; 2.1 < M < 3; 3.1 < M < 4; 4.1 < M < 5; 5.1 < M < 6 and M > 6. Table 5.2 illustrates the rate of occurrence as a function of time interval for different magnitude classes. The rate is given as N/T, where N is the cumulative number of earthquakes in the time interval T. These results are shown in Figure 5.10 and Table 5.2.

Figure 5.10 Frequency of events per decades

Table 3.2 Rate of occurrence for various magnitude range													
TIME	TIME	1.1	<m<2< td=""><td>2.1</td><td><m<3< td=""><td>3.1</td><td><m<4< td=""><td>4.1</td><td><m<5< td=""><td>5.1</td><td><m<6< td=""><td>Ν</td><td>A>6</td></m<6<></td></m<5<></td></m<4<></td></m<3<></td></m<2<>	2.1	<m<3< td=""><td>3.1</td><td><m<4< td=""><td>4.1</td><td><m<5< td=""><td>5.1</td><td><m<6< td=""><td>Ν</td><td>A>6</td></m<6<></td></m<5<></td></m<4<></td></m<3<>	3.1	<m<4< td=""><td>4.1</td><td><m<5< td=""><td>5.1</td><td><m<6< td=""><td>Ν</td><td>A>6</td></m<6<></td></m<5<></td></m<4<>	4.1	<m<5< td=""><td>5.1</td><td><m<6< td=""><td>Ν</td><td>A>6</td></m<6<></td></m<5<>	5.1	<m<6< td=""><td>Ν</td><td>A>6</td></m<6<>	Ν	A>6
PERIOD	INT.	N	N/T	N	N/T	N	N/T	N	N/T	N	N/T	N	N/T
2000-2004			41.20		29.80				0.80		0.20		0.00
1990-2004	15	298	19.87	193	12.87	57	3.80	9	0.60	1	0.07	2	0.13
1980-2004	25	324	12.96	203	8.12	58	2.32	10	0.40	1	0.04	2	0.08
1970-2004	35	406	11.60	227	6.49	60	1.71	11	0.31	1	0.03	2	0.06
1960-2004	45	478	10.62	243	5.40	63	1.40	13	0.29	4	0.09	2	0.04
1950-2004	55	478	8.69	243	4.42	63	1.15	13	0.24	6	0.11	4	0.07
1940-2004	65	478	7.35	243	3.74	63	0.97	13	0.20	6	0.09	5	0.08
1930-2004	75	478	6.37	243	3.24	63	0.84	13	0.17	6	0.08	5	0.07
1920-2004	85	478	5.62	243	2.86	63	0.74	13	0.15	8	0.09	5	0.06
1910-2004	95	478	5.03	243	2.56	63	0.66	14	0.15	8	0.08	5	0.05
1900-2004	105	478	4.55	243	2.31	63	0.60	14	0.13	10	0.10	5	0.05
1890-2004	115	478	4.16	243	2.11	63	0.55	14	0.12	10	0.09	5	0.04
1880-2004	125	478	3.82	243	1.94	63	0.50	14	0.11	11	0.09	5	0.04
1870-2004	135	478	3.54	243	1.80	63	0.47	14	0.10	11	0.08	5	0.04
1860-2004	145	478	3.30	243	1.68	63	0.43	14	0.10	11	0.08	5	0.03
1850-2004	155	478	3.08	243	1.57	63	0.41	15	0.10	11	0.07	5	0.03
1840-2004	165	478	2.90	243	1.47	63	0.38	16	0.10	13	0.08	5	0.03
1830-2004	174	478	2.73	243	1.39	63	0.36	16	0.09	13	0.07	5	0.03
1820-2004	185	478	2.58	243	1.31	63	0.34	16	0.09	13	0.07	5	0.03
1810-2004	195	478	2.45	243	1.25	63	0.32	16	0.08	13	0.07	6	0.03
1800-2004	205	478	2.33	243	1.19	63	0.31	16	0.08	14	0.07	8	0.04
1790-2004	215	478	2.22	243	1.13	63	0.29	16	0.07	14	0.07	8	0.04
1780-2004	225	478	2.12	243	1.08	63	0.28	16	0.07	14	0.06	8	0.04
1770-2004	235	478	2.03	243	1.03	63	0.27	16	0.07	14	0.06	8	0.03
1760-2004	245	478	1.95	243	0.99	63	0.26	16	0.07	15	0.06	8	0.03
1750-2004	255	478	1.87	243	0.95	63	0.25	16	0.06	15	0.06	8	0.03
1740-2004	265	478	1.80	243	0.92	63	0.24	16	0.06	15	0.06	8	0.03
1730-2004	275	478	1.74	243	0.88	63	0.23	16	0.06	15	0.05	8	0.03
1720-2004	285	478	1.68	243	0.85	63	0.22	16	0.06	15	0.05	9	0.03

Table 5.2 Rate of occurrence for various magnitude range

For each magnitude interval in F igure 5.11, the plotted points are supposed to define a straight-line relation, as long as the data set for that magnitude interval is complete. For a given seismic region, the slope of the lines for all magnitude intervals should be the same and should be equal to the slope of $1/\sqrt{T}$ line, as long as data arecomplete.

Figure

5.11: Standard deviation of the estimate of the mean of the annual number of events as a function of sample length and magnitude class

5.1.6: Estimation of a, b and M_c

A critical issue to be addressed before carrying out seismic hazard analysis is to assess the quality, consistency, and homogeneity of the earthquake catalogue. In addition to the completeness being checked (as described in the last section), the catalogue prepared thus should undergo a quality check especially for cut off magnitude which has direct bearing on the estimation of 'a' *and* 'b' values of Gutenberg R ichter relationship. D ifferent methods have b een us ed for estimation of a, b and M_c values for the catalogues (for complete part only) and all the four sources namely, Himalaya (HIM), Delhi Haridwar Ridge (DHR), Moradabad fault (MOR) and Rajasthan Great Boundary Fault (RGBF).

The methods include the estimation of a, b and M_care Maximum Curvature method (M1), Fixed $M_c = M_{min}$ (M2), goodness of fit M_c90 (M3) and M_c95 (M4), best combinations of M_c90 and M_c95 and maximum curvature (M5), Entire Magnitude R ange (EMR) (M6), Shi a nd B olt (1982) method (M7), B ootstrap method (M8) and C ao and G ao (2002) method (M9). In this study the free code of seismicity analysis software package ZMAP (Wiemer, 2001), which is written in Mathworks' commercial software language Matlab, has been used. Figure 5.12 shows the estimation of a, b and M_cusing these methods for HIM source. The results for all methods and sources are tabulated in Table 5.3 where a, b

and M $_{\rm c}$ values a re s hown for the four s ources us ing a ll t he ni ne m ethods (Joshi a nd Sharma, 2008).

5.1.7: Estimation of M_{max}

The maximum magnitude is an important variable in the seismic hazard estimation as it reflects maximum potential of strain released in larger earthquakes. The instrumental and historical records of earthquakes are often too short to reflect the full potential of faults or thrusts. T he m aximum r egional m agnitude, M _{max}, is de fined a s t he upper l imit of magnitude for a given region or it is magnitude of largest possible earthquake. In other words i t i s a s harp c ut-off m agnitude a t a m aximum m agnitude M _{max}, s o t hat, by definition, no earthquakes are to be expected with magnitude exceeding M_{max}.

		DHR	HIM	MOR	RGBF
	а	3.58	3.27	2.33	1.56
M1	b	0.64±0.02	0.35±0.02	0.45±0.13	0.27±0.01
	Mc	1±0.01	2.4±0.4	2.0±0.84	2.6±1.9
	а	3.59	2.78	1.92	1.50
M2	b	0.64±0.02	0.21±0.01	0.31±0.05	0.24±0.06
	Mc	1±0.01	1.1±0.11	1±0.01	1±0.05
	а	3.56	3.84	-	-
M3	b	0.62 ± 0.02	0.49±0.01	-	-
	Mc	1±0.07	3.4±0.33	-	-
	а	3.67	-	-	-
M4	b	0.66±0.02	-	-	-
	Mc	1.6±0.04	-	-	-
	а	3.59	3.40	2.29	1.56
M5	b	0.63±0.01	0.38±0.08	0.44±0.11	0.27±0.01
	Mc	1.1±0.24	2.6±0.63	2.0±0.92	2.6±1.9
	а	-	3.30	2.25	-
M6	b	-	0.36±0.04	0.45±0.01	-
	Mc	-	2.6±0.32	2.1±0.22	-
	а	3.63	3.22	-	-
M7	b	0.64 ± 0.05	0.34±0.03	-	-
	Mc	1.5±0.16	2.1±0.24	-	-
	а	3.64	3.16	-	-
M8	b	0.65±0.04	0.32±0.03	-	-
	Mc	1.5±0.17	2.0±0.28	-	-
	а	3.42	2.85	-	-
M9	b	0.55±0.02	0.23±0.01	-	-
	Mc	1.1±0.01	1.2±0.11	-	-

Table 5.3: Estimation of a, b and Mc values for all sources using different methods

The pr obabilistic a pproach for e stimating the m aximum r egional m agnitude M_{max} was suggested by Kijko and Sellevoll (1989) based on the doubly truncated G-R relationship. It has been further refined by K ijko and Graham (1998) to consider the uncertainties in the i nput magnitude d ata. M_{max} from K ijko-Sellevoll-Bayes e stimator is obt ained following Kijko and Graham, (1998 and 2001). The results showing the values of λ , β and M_{max} are gi ven i n Table 5.4 (Joshi a nd S harma, 2008). The ge neral t rend of t he variance has quite a lot of effect on the seismic hazard estimation.

		DHR	HIM	MOR	RGBF
M1	λ	15.33±0.58	9.94±0.64	1.56±0.30	0.30±0.11
	β	1.55±0.03	0.88±0.03	1.0±0.14	0.62±0.02
	M _{max}	6.90±0.42	6.95±0.30	7.02±0.37	7.45±0.39
M2	λ	15.33±0.58	6.93±0.36	1.05±0.16	0.46±0.11
	β	1.55±0.03	0.50±0.01	0.67±0.06	0.62±0.02
	M _{max}	6.90±0.42	6.92±0.30	6.91±0.32	7.40±0.36
M3	λ	17.76±0.63	5.28±0.48		
	β	1.53±0.03	1.12±0.02		
	M _{max}	6.84±0.38	6.99±0.31	-	-
M4	λ	19.77±0.99			
	β	1.53±0.02			
	M _{max}	6.82±0.31	-	-	-
M5	λ	12.44±0.53	9.47±0.68	1.56±0.29	0.30±0.11
	β	1.45±0.03	1.01 ± 0.05	0.99±0.13	0.62±0.02
	M _{max}	6.84±0.38	6.97±0.31	7.07±0.40	7.45±0.39
M6	λ		9.23±0.63	1.37±0.27	
	β		0.97 ± 0.04	1.03±0.02	
	M _{max}	-	6.96±0.31	7.12±0.44	-
M7	λ	7.88±0.42	11.0±0.67		
	β	1.51±0.05	0.85±0.03		
	M _{max}	6.90±0.42	6.95±0.30	-	-
M8	λ	7.88±0.42	11.6±0.68		
	β	1.51±0.04	0.83±0.03		
	M _{max}	6.90±0.42	6.95±0.30	-	-
M9	λ	12.99±0.53	6.88±0.36		
	β	1.35±0.03	0.54±0.01		
	M _{max}	6.77±0.34	6.93±0.30	-	-

Table 5.4: Estimation of λ , β and M _{max} for all sources using various methods

For example the b-value varies from 0.21 ± 0.01 to 0.66 ± 0.02 , which obviously is not the case with this area. Keeping in view the high variability the estimation of seismic hazard parameters was revisited. The M_c was estimated by eye fitting as given in Figure 5.13 and F igure 5.14 f or the H imalayan r egion and t he rest of the zones. This was necessitated because the variance in seismic hazard parameters can be attributed to the

sporadic a nd i ntermittent r eporting of m icro-earthquake i n t he c atalogue. T he microearthquake data were filtered and a new catalogue was found for further analysis (Figure 5.15). T he earthquakes were pl otted on t he t ectonic m ap after filtering of e arthquakes with magnitudes less than 3.0 as shown in Figure 5.16.

The b-value has been reported to be representation of the region and not the individual sources (Habermann, 1996). The area was therefore divided into two parts i.e., the part of HIMALAYAN r egion within 350km f rom D elhi and the r est of ar eaviz. DELHI-MORADABAD-RAJASTHAN (DMR) r egion counting of t hree s ource z ones n amely DHR, MOR and RGBF. The 'a' and 'b' values were recalculated for these two areas. The b-value w as as signed as 0.59 ± 0.030 forHIMALAYAN r egion and 0.42 ± 0.012 for the DELHI-MORADABAD-RAJASTHAN (DMR) region. Again, a-value was re-distributed based on the area of the seismogenic source zones. A maximum magnitude (M_{max}) value for two regions was also calculated using maximum likelihood approach given by K ijko and Graham (1998). These estimated 'a' and 'b' values and its corresponding λ and β values and maximum magnitude (M_{max}) used for the study are shown in Table 5.5.

Figure 5.13 The magnitude vs. time plot for HIMALAYAN region microearthquake data included)

Figure 5.14 The magnitude vs. time plot for DMR region (microearthquake data included)

Figure 5.15The magnitude vs. time plot for the catalogue C2 for DMR region (microearthquake data filtered)

Parameter	HIM	DHR	MOR	RGBF
a	2.64±0.16	0.93±0.08	0.62 ± 0.08	0.89±0.08
b	0.59±0.03	0.42±0.012	0.42±0.012	0.42±0.012
M _c	4.0	3.0	3.0	3.0
M _{max}	7.2±0.37	6.42±0.47	6.42±0.47	6.42±0.47
λ	1.93±0.21	0.48 ± 0.08	0.23±0.038	0.44±0.071
β	1.35±0.37	0.96±0.03	0.96±0.03	0.96±0.03

 Table 5.5 Parameters used for the seismic hazard assessment

Figure 5.16: Seismotectonic map of the region around Delhi showing earthquake events and its epicenters greater than magnitude 3.0 (M_s Scale)

5.2 GROUND MOTION PREDICTION EQUATIONS

One of the important c omponents of s eismic ha zard estimation is the prediction of strong gr ound m otion (SGM). There are, r arely s ufficient number of gr ound m otion recordings available near a site or in an area for carrying out seismic hazard analysis to allow a di rect estimation of the s trong gr ound m otions. It is therefore ne cessary t o develop empirical relationships, for estimating gr ound m otions in terms of m agnitude, distance, site conditions, and other variables from the set of strong-motion data from a large region or specific tectonic set up.

Since no s trong motion data are available from the region under study, use of spectral attenuation relationship based on world wide data has to be made and such relationships are know n as G round Motion P rediction E quations (GMPE). A j udicious de cision t o estimate ground motion is therefore required for adoption in any particular situation. In the present case the spectral attenuation relationships were explored for use in Northern Indian region. The spectral attenuation relationships for the shallow crustal earthquakes are generally available.

The important points considered for selection of the GMPEs were –tectonic environment, focal de pths, parameters ava ilable i n present c ase vi s-à-vis us ed i n t he r elationship, spectral peroids for which the strong ground motion is available, etc. The GMPEs used in the present work are developed by A brahamson and S ilva (1997), S adigh et al. (1997) and Boore and Atkinson (2008) to estimate the strong ground motion.

5.3 SEISMIC HAZARD ASSESSMENT OF NCT DELHI

The well e stablished Probabilistic S eismic H azard Analysis (PSHA) which was developed by C ornell (1968) and A lgermissen et al., (1982) has been carried out for Delhi under collaborative project with IIT Roorkee. In the present study the CRISIS (version released in 2007) computer code for seismic hazard as sessment (Ordaz et al., 2003) has been applied. The code accommodates uncertainty in a number of seismicity model parameters, and has a user-friendly interface. It accepts polygon-dipping areas as well as fault sources, and also facilitates characteristic earthquake recurrence models. CRISIS computes seismic hazard using a probabilistic model that considers the rates of occurrence, attenuation characteristics and geographical distribution of earthquakes. The seismotectonic modelling of the region around Delhi has been carried out as detailed in previous section 5.1.2 and the seismogenic sources namely DHR, HIM, MOR and RGBF have been considered for the PSHA as areal as well as line sources. The seismic hazard parameters namely λ , β and M _{max} have been estimated and are given in Table 5.5 have been us ed a long with t he t hree s trong gr ound m otion a ttenuation r elationships a s described above in section 5.2. The following sections describe the results obtained for the seismic hazard in Delhi.

5.3.1 Formulation of Logic Tree

For formal and quantitative treatment of uncertainties logic tree approach has been used. Logic t ree a nalysis c onsists of s pecifying a s equence of as sessments in a s equential manner. Logic t ree c onsisting of three nodes: s ource, m ethod of estimating seismic hazard parameters and ground-motion attenuation model, has been used. The structure of logic t ree f or as sessment of s eismic h azard parameters is shown in Figure 5.17. Two categories of seismic source zones has been split into two branches namely line and areal for t he s eismogenic s ources vi z. D elhi-Haridwar ri dge (D HR), Himalaya(HIM), Moradabad (MOR) and Rajasthan G reat B oundary (RGBF) z ones. Second node is for seismic hazard parameters. The third attenuation model node consists of three branches accounting f or t hree di fferent a ttenuation r elationships vi z., Abrahamson a nd S ilva (1997), Sadigh et al., (1997) and Boore and Atkinson (2008).

Figure 5.17: Logic tree-Monte Carlo simulation to estimate Strong Ground motion (SGM) and uncertainty

Logic tree approach has been used for this study by a dding the Monte-Carlo simulation to generate s eismic h azard parameters f or e ach s esimogenic s ource zones de scribed above at section 5.1.2 "Seismotectonic Modelling".To estimate the COV values Monte-Carlo simulation has been used to generate 100 samples of each of the parameters forboth type of source models (line and areal)shown in figure 5.2(left panel), andfigure 5.2(right panel). Crameret al. (1996) and Lombardi et al., (2005) have used 100 samples for such type of analysis. S ome more trials with m ore s imulations (up to 1000) do not s how significantly different r esult (Lombardi et al., 2005). In the present study 100 s amples were chosen to look for the variability in the results. Only one branch-point parameter has been varied at a time and the remaining parameters were held fixed to mean values so that C OV varies a bout mean ground motion hazard and produce the variability of the concern parameter only.

5.3.2: Estimation of Strong Ground Motion for Delhi

The grid on which the strong ground motion is estimated is given in Figure 5.2(left panel) and 5.2(right panel). The mean PGA values (spectral acceleration at 0.01second)have been estimated for the return periods 100, 225, 475 and 2500 years. The return periods have been selected based on the parameters being used in earthquake engineering. While 100 years return period gives the idea of the hazard in the area in next 100 years, the 225 year and 475 ye ar r eturn periods and s o o n. The M CE (Maximum C onsidered

Earthquake) corresponds to the 2 % exceedance value in 50 years which is equivalent to the 2475 years return period.

- (i) The mean PGA values for Delhi region for the 100 years return period varies from 0.04g to 0.07g
- (ii) The mean PGA values for Delhi region for the 225 years return period varies from 0.06g to 0.11g
- (iii) The mean PGA values for Delhi region, for the 475 return period, varies from 0.09g to 0.16g.
- (iv) The mean PGA values for Delhi, region for the 2500 r eturn period, varies from 0.18 to 0.31g

The spectral acceleration in terms of PGA has also been estimated for the periods of 0.1 sec, 0.3 sec and 1.0 seconds. In single degree of freedom the spectral periods of 0.1 sec, 0.3 s ec and 1.0 s econds c orresponds t o a pproximately s ingle, t hree and t en s tory buildings respectively. These are the type of buildings generally found in Delhi.

In the second part ground r esponse s tudy, m ean PGA values (spectral acceleration at 0.01second) and variation of the covariances (COV) mapsfor Delhi r egion f or 10 % exceedance values in 50 years for design basis earthquakes and 2 % exceedance value in 50 years (Maximum Considered Earthquake) have been used and s hown in Figure 5.18 & 5.19 respectively.

Figure5.18: Left panel, Mean PGA Mapfor Delhi region for 475 Years return period (T); right panelPGA COV Map 475 Years return period (T)

Figure5.19Left panel, mean PGA Map for Delhi region for 2500 Years return period (T) and right panel, PGA, COV Map 2500 Years return period (T)

5.4: UNIFORM HAZARD RESPONSE SPECTRA (UHRS)

Traditionally, peak ground acceleration (PGA) has been used to characterize the strong ground motion. However, in recent times, the preferred parameter has been the spectral acceleration (S_a) . It may be pointed out that the old practice of scaling a normalized response s pectral s hape t o t he de sign P GA l evel l eads t o di fferent pr obability of exceedance over t he f requency range of ci vil en gineering s tructures. T he pr esent approach in engineering practice is to use design response spectra, with equal probability of exceedance over the entire frequency range of interest. Such design spectra are known as Uniform H azard Response S pectra (UHRS). For estimating UHRS, seismic ha zard curves, S_a are computed f or a r ange of f requency values. From t hese hazard cur ves, response spectra for a specified probability of exceedance over the entire frequency range of interest are obtained at various places in Delhi. The response spectra for various return periods have also been estimated. The places have been shown in Figure 5.20 on Delhi map where UHRS have been generated. The estimated UHRS at three sites for return period of 475 year and 2500 year are shown in Figure 5.21(left & right)- 5.23(left & right) along with mean and mean \pm sigma respectively. The general shape of the spectra reveals that these can be extended to whole Delhi either taking the closest to the site of interest or by normalising the general shape and multiplying by the PGA in that area.

Figure 5.20 Location at which response spectra have been generated for different return periods

Figure 5.21 Response spectra at Alipur (left) 475 years return period (right) 2500years

Figure 5.22Response spectra at Bawana(left)) 475years return period (right) 2500 years return period

Figure 5.23 Response spectra at Tigri (left) 475 years return period (right) 2500 years return period

5.5: FREE SURFACE CORRECTION

In the previous sections Probabilistic S eismic H azard maps for different probability of exceedance pr oviding P eak G round A cceleration and Spectral ac celeration values at different sites for different periods and subsequent uniform hazard response spectra have been generated at engineering bedrock level having shear wave velocity of about 760m/s based on Ground Motion Prediction Equations (GMPE) and PSHA. The PGA calculated at t he B edrock using Ground M otion P rediction E quations (GMPE) is actually ascertained at out crop. Therefore, to make t hem us e as i ncident w ave t o the be drock PGA, free surface correction need to be applied.Sketch showing free surface correction is given in Figure 5.24

In view of t he above, to incorporate f ree s urface correction, amplitude of s pectral acceleration values at different sites and subsequently response spectra evaluated, have been divided by a factor of 2 for accounting free surface correction.

In the present study, the PGA map (spectral acceleration map at .01s) for 10% probability of exceedance in 50 y ears corresponde to design basis earthquake of retun period 475 - year and 2% probability of exceedence in 50 years correspond to Maximum Considered Earthquakes f or r eturn period of 2500 ye ars a re obt ained a fter applying f ree s urface correction and pr esented as F igures5.25&5.26 respectively. The P GA values f or 10% probability of exceedance in 50 years vary from .04g t o 0.08g and for 2% probability of exceedance in 50 years vary from .04g t o 0.16g. Response s pectra are also thus normalized such that the zero frequency response at the free surface is 2.

This is what the response would be at the surface in the absence of any near surface layer or gr adient, a nd t his normalization t hus s hows t he r elative a mplification due t o differences i n near-surface s tructure. A few t ypical normalized response spectra at bedrock level for DBE and MCE for sites Alipur, Bhawana, and Tigri us ed for further study are shown in Figure 5.27(left & right)-5.29(left & right) respectively.

Figure 5.24: Sketch showing free surface correction

Figure5.25Spectral A cceleration m ap f or t he p eriod 0.01s (ZPA) after a pplying f ree surface cor rection for 10% pr obability of e xceedance i n 50 ye ars (return period 475 years) at engineering bedrock (Vs 760 m/s).

Figure 5.26 Spectral Acceleration map for the period 0.01s (ZPA) after applying free surface cor rection for 2% pr obability of e xceedance i n 50 ye ars (return period 2500 years) at engineering bedrock (Vs 760 m/s).

Figure 5.27Response spectra for site Alipur after free surface correction for (left) 475 year return period and (right) 2500 year return period

Figure 5.28 Response spectra for site Bhawana after free surface correction for (left) 475 year return period and (right) 2500 year return period

Figure5.29 Response spectra for site Tigri a fter free surface correction for (left) 475 year return period and (right) 2500 year return period

5.6 GENERATION OF SPECTRUM COMPATIBLE GROUND MOTION TIME HISTORIES

Ground response analysis requires a realistic ground motion as input to the engineering bedrock (Shear wave velocity around 760m/s). No actual strong motion recordis available for scenario of Delhi. Even if such recordings were available, there is no basis to expect that a future earthquake might generate same or similar ground motion. For engineering purposes, it is not necessary to produce each time history exactly to describe the ground motion adequately. It is necessary, however, to be able to describe the characteristics of the ground motion that are of engineering significance and to identify a number of ground motion pa rameters t hat r eflect t hose c haracteristics. F or e ngineering pur poses, t hree

characteristics of ear thquake motion are of primary significance (i) The amplitude (ii) Frequency content and (iii) duration of motion. It is, therefore, essential that for ground response analysis, synthetic time history is to be generated which should be realistic for the specific site and match target ground motion parameters such as peak acceleration, velocities or spectral ordinates represented by uniform hazard response spectra detailed at para. 5.4.

Synthetic time histories can be developed in a number of ways. The most commonly used methods for generation of synthetic ground motions fall into four main categories:

- (a) Modification of actual ground motion records,
- (b) Generation of artificial ground motions in time domain,
- (c) Generation of artificial motions in frequency domain, and
- (d) Generation of artificial ground motions using Green's function techniques.

In the present study as the time history of ground motion is required as input motion, Synthetic time histories have been generated using Time domain generation approach, described in following para.

5.6.1Time domain generation

Generation of artificial ground motion time history in time domain, typically involves multiplying a stationary, filtered white noise (or filtered Poisson process) signal by a n envelope function that de scribes the buildup and subsequent de cay (nonstationary) of ground motion a mplitude (Shinozuka, M and Deodaties, G (1988). Several authors worldwide have worked in this field and large amount of literature is available. Synthetic time history can be generated based on target response spectra of the site and estimated duration of time history.

Kumar (2006) has also developed a computer code based on suggested envelope function of B oore (1983) for generation of time history. On e laborate di scussion and pe rsonal communication with Prof. Ashok Kumar, IIT Roorkee, this programme has been used for present m icrozonation s tudy of N CT D elhi for generation of s pectral c ompatible t ime history from the target response s pectra generated from P SHA as de tailed in pr evious section 5.4 at different sites of geotechnical/geophysical investigation for further ground response analysis. In the present study two period of exceednec i.e. (i) 2% probability of exceedance i n 50 ye ar c orresponding t o r eturn pe riod of 2500 ye ar a nd (ii) 10% probability of exceedence in 50 ye ar c orresponding to r eturn period of 475 ye ars have been considered f or generation of t ime hi stories. These pe riodscorresponds to Design Basis Ground motion (DBG) and Maximum Considered Earthquake (MCE) respectively. The t ime dur ation pa rameters ba sed on di fferent s uggested m odels a nd scrutiny of available strong m otions da ta of D elhiwith IIT Rookee (personal c ommunication with Prof. Ashok Kumar, who is maintaining a network of Strong Motion in India) has been taken as follows:

Total time duration: 40.96 second, Rise time: 10second, Decay Time:20 second.

In the present study 449 time histories spread over NCT Delhi have been generated for both return periods i.e 475 year and 2500 year. These time histories have been used at the sites a t which geotechnical/geophysical investigations h ave been carried for fur ther ground response study detailed in following chapters. Three such time histories for sites Alipur, Bhawana, and Tikri are shown in following Figures5.30-5.32 for 475 year return period and figures 5.33-5.35 for 2500 year return period in green colour. The time history shown in red colour is time history at surface obtained on the basis of ground response analysis described in Chapter-9.

Figure5.30Spectrum Compatible Time History at engineering bedrock for site Alipur(In green colour) for 475 year return period. Time history shown in red colour is at surface.

Figure5.31Spectrum Compatible Time History at engineering bedrock for site Bhawana (in green colour)for 475 year return period. Time history shown in red colour is at surface.

Figure5.32Spectrum Compatible Time History at engineering bedrock for site Bhawana (in green colour)for 475 year return period.Time history shown in red colour is at surface.

Figure5.33 SpectrumCompatible Time History at engineering bedrock for site Alipur (in green colour) for 2500 year return period. Time history shown in red colour is at surface.

Figure5.34 Spectrum Compatible Time H istory at e ngineering be drockfor site Bhawana(in green colour)for 2500 year return period.Time history shown in red colour is at surface.

Figure5.35Spectrum Compatible Time History at engineering bedrock for site Tikri (in green colour) for 2500 year return period. Time history shown in red colour is at surface.

5.7: PEAK GROUND ACCELERATION (PGA) AT ENGINEERING BEDROCK AFTER FREE SURFACE CORRECTION, DERIVED FROM GENERATED TIME HISTORIES

In the present study, as detailed in section 5.6., earthquake acceleration time histories at engineering be drock have be en s imulated atall the geotechnical/ geophysical investigations sites for 2% probability of exceedence in 50 y ears and 10% probality of exceedence in 50 y ears based on seismic hazard curves developed from PSHA for NCT Delhi described in above section5.4. The maximum amplitude of the ground acceleration

time-history thus generated gives PGA at the depth of engineering bedrock (shear wave velocity 760m/s) at different sites. On the basis of time histories generated at all the 449 sites at engineering bedrock;PGA values have been evaluated at each site and given in Table 9.4 (appended). These site specific PGA values at 449 sites have been converted in continuous s urface us ing Inverse Distance Weighted (IDW) i nterpolation t echnique, using appropriate parameters and cross validation so that the Root Mean Square (RMS) values between predicted and actual are as minimum as possible. This is one of the most popular methods adopted by ge oscientists and geographers available in GIS packages. Using this c ontinous da ta PGA maps at engineering be drock have been generated for NCT Delhi for two periods of exceedance i.e.

- (i) 2% probability of exceedence in 50 years for the return period of 2500 year, based on maximum credible earthquake(MCE), for 5% damping.
- (ii) 10% probability of exceedence in 50 years for the return period of 475 year based on Design Basis Earthquake (DBE), for 5% damping.

These maps are attached (appended) as Map-11& 12. For 2% probability of exceedence in 50 ye ars i.e for MCE, the PGA values at engineering be drock varied from 0.067g to 0.114g and for 10% probability of exceedence in 50 years i.e for DBE, the PGA values at engineering bedrock varied from .035g to .058g.

CHAPTER 6

GEOTECHNICAL /GEOPHYSICAL DATA GENERATION AND SOIL CHARACTERIZATION

Each soil type responds differently, when subjected to the ground motions, imposed due to e arthquake loading, because of its physical property, de pth to be drock and na tural frequency. Usually the younger and softer soil amplifies ground motions relative to older, more c ompact s oils or bedrock. Large a mplification of the s eismic s ignals generally occurs in areas where layers of low seismic velocity overlie material with high seismic velocity, i.e. where s oft sediments c over be drock or more s tiff s oils. These s oil layers over the bedrock may attenuate or amplify the base rock earthquake motion depending upon geotechnical characteristics, their depth, and arrangement of layering.

Part two of Seismic hazard microzonation study is therefore quantification of the spatial variation of the subsurface response on a typical earthquake that c an be expected at a particular s ite a nd i n t he a rea w hen gr ouped i n s imilar type of r esponse. In or der t o quantify the expected ground motion, it is necessary to determine the manner in which the s eismic s ignal i s pr opagating t hrough t he s ubsurface. P ropagation is particularly affected by t he l ocal geology a nd t he ge otechnical gr ound conditions. Thus t he prerequisite of t his pa rt of t he s tudy i s s ubsurface s oil c haracterization t hrough geotechnical/geophysical i nvestigationsat appropriate num ber of s ites. T he num ber of sites to be investigated for ascertaining soil characteristics depends upon t he geological variability of t he dom ain a nd requirement of s cale of t he s tudy. T his r equires a comprehensive pl anning of g eotechnical/geophysical i nvestigations t o c apture a ll important features of the soil characteristic to meet the requirement of scale of study.

6.1 OPTIMIZATION O F N UMBER O F S ITES F OR GEOTECHNICAL/ GEOPHYSICAL INVESTIGATIONS

The geoscientific constitution of Delhi provides a highly variable domain with a complex scenario having scope of rapid changes in seismic accentuations. In order to understand local s ubsurface c onditions a nd va riability of ge otechnical c haracteristics, a comprehensive pl anning, for the opt imization of num ber of sites for geotechnical and geophysical investigations based on geological/geomorphological variability, to meet the requirement of scale of the study are required.

Thetotal area of NCT Delhi to be investigated is about 1485 square kilometers. In order to understand soil characteristics and stratigraphical variability of the domain and meet

CHAPTER 6

GEOTECHNICAL /GEOPHYSICAL DATA GENERATION AND SOIL CHARACTERIZATION

Each soil type responds differently, when subjected to the ground motions, imposed due to e arthquake loading, because of its physical property, de pth to be drock and na tural frequency. Usually the younger and softer soil amplifies ground motions relative to older, more c ompact s oils or bedrock. Large a mplification of the s eismic s ignals generally occurs in areas where layers of low seismic velocity overlie material with high seismic velocity, i.e. where s oft sediments c over be drock or more s tiff s oils. These s oil layers over the bedrock may attenuate or amplify the base rock earthquake motion depending upon geotechnical characteristics, their depth, and arrangement of layering.

Part two of Seismic hazard microzonation study is therefore quantification of the spatial variation of the subsurface response on a typical earthquake that c an be expected at a particular s ite a nd i n t he a rea w hen gr ouped i n s imilar type of r esponse. In or der t o quantify the expected ground motion, it is necessary to determine the manner in which the s eismic s ignal i s pr opagating t hrough t he s ubsurface. P ropagation is particularly affected by t he l ocal geology a nd t he ge otechnical gr ound conditions. Thus t he prerequisite of t his pa rt of t he s tudy i s s ubsurface s oil c haracterization t hrough geotechnical/geophysical i nvestigationsat appropriate num ber of s ites. T he num ber of sites to be investigated for ascertaining soil characteristics depends upon t he geological variability of t he dom ain a nd requirement of s cale of t he s tudy. T his r equires a comprehensive pl anning of g eotechnical/geophysical i nvestigations t o c apture a ll important features of the soil characteristic to meet the requirement of scale of study.

6.1 OPTIMIZATION O F N UMBER O F S ITES F OR GEOTECHNICAL/ GEOPHYSICAL INVESTIGATIONS

The geoscientific constitution of Delhi provides a highly variable domain with a complex scenario having scope of rapid changes in seismic accentuations. In order to understand local s ubsurface c onditions a nd va riability of ge otechnical c haracteristics, a comprehensive pl anning, for the opt imization of num ber of sites for geotechnical and geophysical investigations based on geological/geomorphological variability, to meet the requirement of scale of the study are required.

Thetotal area of NCT Delhi to be investigated is about 1485 square kilometers. In order to understand soil characteristics and stratigraphical variability of the domain and meet

the s et obj ectives enu merated above, as p er s cale of t he s tudy on 1:10,000scale, geotechnical/geophysical investigations are required in a grid of 100mX100 m. Thus the total numbers of sites to be investigated are 148,500.However,smaller the grid size the accuracy will be m ore in evaluating hazard in an area, but investigations at this m uch large num ber o f s ites is pr actically impossible a nd a lso not ne cessary, a s the soil Stratigraphy over a l arge ar ea doe s not vary in such a s cale. T hus, a comprehensive planning i s r equired t o constrain t he num ber o f s ites t o be i nvestigated f or s uitably representing the stratigraphical variation in the scale of study. An adverse geology might require m ore i nvestigations t han t he average. Therefore, Geological/Geomorphological map provides the primary screening tool to understand the surface variability of domain and he lpful f or f irst o rder pl anning of ge otechnical/geophysical i nvestigations by constraining s ites. By upgr ading i t i n t o s ubsurface m ap by f irst or der geotechnical/geophysical i nvestigations f urther s tudy c an be pl anned f or pr ecise characterization of soil variability of domain.

ISSMGE Technical Committee for Geotechnical Earthquake Engineering classified the seismic microzonation studies into three grades. Details of these three grades of seismic microzonation studies are given in Table 6.1

Geotechnical	Grade-1	Grade-2	Grade-3**
Phenomenon			
Ground	□ HistoricalEarthquakes	□ Microtremor	
Motions	andExisting Information	□ Simplified	Investigation Ground
	□ Geological Maps	GeotechnicalStudy	Response
	\Box Interviews with		Analysis
	Local Residents		
Slope	□Historical Earthquakes	□Air Photosand	Geotechnical
Stability	andExistingInformation	RemoteSensing	Investigation
	□Geological	□Field Studies	□Analysis
	andGeomorphological	□Vegetationand	
	maps	PrecipitationData	
Liquefaction	□ HistoricalEarthquakes	□ Air Photosand	
	andExistingInformation	RemoteSensing	Investigation and
	\Box Geological and	□ Field Studies	Analysis
	Geomorphological map	Interviewswith	
		Local	
		Residents	
Accepted	1:10,00,000 to	1:1,00,000 to	1:25,000 to
Scale of	1:50,000	1:10,000	1:10,000

Table 6.1Details of cl asses of s eismic m icrozonation s tudies(ISSMGE T echnical Committee report)

Mapping			
Grid size for	□Homogeneous	□Homogeneous	Homogeneous
testing	subsurface	sub-surface – 1	sub-surface – 0.5
geophysical	– 2 km x2km	km x 1km to 3	km x 0.5km to 2
survey and	to 5 km x 5km	km x 3km	km x 2km
boreholes	□Heterogeneous	□Heterogeneous	□Heterogeneous
	Subsurface	Sub-surface –	Sub-surface -0.1
	– 0.5 km x0.5 km to 2 km	0.5 km x 0.5	km x 0.1 km to
	х	km to 1 km x 1km	0.5 km x 0.5k
	2km (selectively)		

** For seismic microzonation of urban centers with high seismicity (in seismic zones II, IV &V)

For the present study of Seismic Microzonation of Delhi on 1:10,000 scale, as discussed in chapter-4, surface geological map of NCT Delhi on 1:10,000 scale has been generated in collaboration with Geological Survey of India (GSI). However, mapping programme was taken with objective to upgrade existing surface geological map of Delhi, available on 1:50,000 scale, but it was supported by subsurface information collected during field survey, ge otechnical i nvestigation of s oil s amples c ollected dur ing field s urvey a nd digging pits, particularly in Y amuna flood plain area. Thus, even it is surface geology map, but proving quite a good insight of sub-surface geology of the area.

Further, for mutual validation of data and generation of empirical relations among data generated t hrough di fferent t echniques, s ome i nvestigations w ere pl anned a t c ommon sites. For example for validation of SPT, DCPT were also planned at all sites. Similarly for generation of f empirical relations s pecific t o t he dom ain, among t he s hear w ave velocity and SPT- N value, geophysical and geotechnical investigations were planned at a few common sites.

Thus to achieve the objectives set as above, an integrated programme of geotechnical and geophysical investigations for generation of da tawas taken up through outsourcing and completed as detailed below: The sites are spread over NCT Delhi, represented by 75 toposheets.

6.2: DATA GENERATION

6.2.1: Geotechnical investigations

In the present study following geotechnical data has been generated

At 302 sites shallow drilling, up to 30 meter depth(as per IS: 5313-1980)or up to 3m in r ock s trata i f e ncountered w ithin 30m de pth. D uring t he c ourse of drilling (i) Conducted S tandard P enetration T est [SPT] (as per I S: 2131-1981) and collected disturbed Samples (DS) al ternately at ev ery 1.5m interval or change of s trata (ii) Collected U ndisturbed S ample (UDS) at e very 3.0m interval as per I S c ode (IS:

2132-1986, I S: 8763 -1978, I S: 9640 -1980, I S: 10108-1982)Using a ppropriate s oil samplers. A sample copy of data sheet for one borehole indicating obs erved SPT N values and description of strata as per field observation at different depths is given in figure 6.1(a).

- At 12 sites deep drilling (variable depth up to 300 meter) to delineate bedrock. During the course of drilling (i) Conducted Standard Penetration Test [SPT] (as per IS: 2131-1981) and collected di sturbed S amples (DS) a lternately at every 1.5m interval or change of strata (ii) Collected Undisturbed Sample (UDS) at every 3.0 m interval as per IS c ode (IS: 2132-1986, IS: 8763-1978, IS: 9640-1980, IS: 10108-1982) Using appropriate soil samplers.
- Dynamic Cone Penetration Testing (DCPT) have been conducted close to all shallow and deep drilling locations (314 sites) for directly measuring shear wave velocity of soils in -situ f or c omparison. A Sample c opy o f D CPT r esults f or on e bor e hol e location is given in figure 6.1(b)
- Routine l aboratory t ests f or s oil c haracterization (On a bout 6000 di sturbed a nd undisturbed soil samples collected through bore holes at different depths– Soil type, Grain size, Atterberg Limit, Specific gravity, Relative density, water contain, Direct Shear (DS/UDS) on representative s oil samples, Triaxial s hear (DS/UDS) on representative s oil sample copy of da ta s heet f or on e bor ehole indicating index properties of soil at different depths on the basis of laboratory test is given in Table 6.2.
- Limited Special la boratory test on representative s amples: C yclic T ri-axial f or studying the effect of c yclic s hear s tress on soil modeling the conditions during an earthquake.
- Resonant C olumn t est: on s elected s amples of different types of s oils collected at seven sites spread over Delhi to determine shear modulus and damping ratio of soils under different confining pressure, void ratios, and shear strain amplitude, number of cycles and time of confinement.

Newly generated geotechnical data left certain gap area particularly in Central Delhi and therefore reports of geotechnical investigations consisting of data at 490sites, mostly in central Delhi, collected from different construction agencies during first phase of study have been rescrutinized and data of 120 s ites have been found to be useful for one or other study (discussed in later chapters).

6.2.2 Geophysical investigations

• Shear wave velocity measurement using 28/48, Channel Seismogram (MASW)at 110 sites was conduc ted. H owever, da ta of 83 sites w ere f ound s uitable f or s ite characterization (discussed in chapter 'site classification'). For ground response study only two sites data are used (discussed in Chapter-9).

• Shear wave velocity at selected 25 sites using Cross Hole Technique (CHT)/ Down Hole Technique (DHT). Out of these 25 sites 19 sites are common with geotechnical investigations and MASWsites and us ed f or c omparison and de velopment of empirical relations.

Thus for the present study of Seismic Hazard Moicrozonation of NCT Delhi geotechnical data collected at 434 sites and geophysical data collected at 108 sites have been used. A documentation M ap-13 shows l ocations of a ll ge otechnical/geophysical investigations sites at which data have been generated/collected and used for the study.

6.3: SOIL CHARACTERISTICS IN DELHI

The data for each borehole, consists of

- (i) Results of D ynamic C one P enetration T ests. A s ample s heet f or one borehole is given in Figure 6.1(a)
- (ii) Results of SPT N vales. A sample sheet for one borehole is given in Figure 6.1(b)
- (iii) Soil characteristic of each borehole site at 1.5m interval to the drilled depth

 such as, type of soil, natural moisture content(%), Specific gravity, Natural dry density, results of mechanical analysis of soil, results of consolidation test, consistency limit and Shear p arameters. A s ample s heet f or on e borehole is given in Table 6.2.

On the basis of above geotechnical data collected at 434 locations spread over NCT Delhi different characteristics of soil in NCT Delhi has been studies.

Figure 6.1(a): Sample copy of DCPT results for one borehole location.

Figure 6.1(b): A Sample copy of SPT 'N' value results for one borehole location.

Table 6.2 A sample copy of data sheet for one borehole indicating index properties of soil collected at different depths on the basis of laboratory test.

lore h heet N	ole no. : : lo. : 61	CWG ho 23 N 28° 34'				lew Delh	•														
	1	Oetails o	fsample			nteet				ME	CHANICA	L ANALY	sis			lidation est	CONS	ASTENCY	LIMIT		EAR METER
GI No.	Lab sample No.	Type of sample	Dopth of sample (m	Soil classification	Legend	Natural Moisture Content 1	Natural Dry Demily tymical	Specific Grants	and a	CU DAVE BAND	MEDIDM SYMD (11)	Dive SAME (S)	BILT (S)	CLAY TO		60	Liquid limit (%)	Plantic limit (%)	Planticity index (P1)	Cohesion e (hg/cm²)	Angle of internal triction (degree)
1	4842	DS	0.00	SM	11	-	-	1	0.00	dea.	1.00	63.00	36*	-	-	NON PLAS		NON PLASTIC		-	-
2	4843	SPT	1.50	CL		-	-		4.00	2.00	1.00	19:00	74*	-	-	-	33.00	18.00	15.00	540	-
3	4844	UDS(P)	3.00	ĊL.		20.00	1.67	12	0.00	0.00	3.00	13.00	70.00	14.00	12	1.2	33.00	20.00	13.00	142	-
4	4845	UDS(H)	3.00	ÇL		23.00	1.70	-	0.00	0.00	1.00	13.00	86*	1	2	-	33.00	21.00	12.00	-	-
5	4846	SPT	4.50	ML			-		0.00	0.00	4.00	41.00	55'	-		-	NO	N PLAS	TIC	-	
6	4847	UDS	6.00	CL.		14.00	1.63		0.00	0.00	1.00	15.00	84*	-	-		32.00	18.00	14.00	-	-
7	4848	SPT	7.50	CL		-	-	-	9.00	5.00	2.00	12.00	72*	-	-	-	31.00	18.00	13.00	-	-
8	4849	UDS	9.00	CL.		20.00	1.69	14	0.00	0.00	2.00	11.00	74.00	13.00	-	-	32.00	17.00	15.00	. + .	-
9	4850	SPT	10.50	CL		-	-	1-	24.00	4.00	2.00	6.00	64*	-	-	-	33.00	18:00	15.00	-	-
10	4851	UDS	12.00	SM	HI	7.00	1.85	<u>ц</u>	9.00	15.00	16.00	17.00	43*	-	12) 12)	-	NO	N PLAS	TIC	-	-
11	4852	SPT	13.50	SM	th N	-		-	9.00	1.00	1.00	41.00	48*	-	_	-	NON PLASTIC		1.20	-	
12	4853	UDS	15.00	CL		21.00	1.61		0.00	0.00	1.00	8:00	91*	-		-	32.00	20.00	12.00		-
13	4854	SPT	16.50	CL		-	-	1.00	8.00	7.00	3.00	7.00	75*	-			32.00	18.00	14.00	$(\rightarrow)^{+}$	-
14	4855	SPT	19.50	CL	1	-	-	-	0.00	0.00	0.00	14.00	73.00	13.00	-	-	33.00	18.00	15.00	-	-

6.3.1 Distribution of soil types

On the basis of geotechnical data collected at 434 sites spread over different geological domains of NCT Delhi, depth wise distribution of different types of soil at each bore hole site ha ve be en s tudied i ndividually and c ollectively for all bore holes in a toposheet. Major part of soil in Delhi consists of sandy soilembedded with silt and clay, which even extends a t s ome bor ehole l ocations t o t he de pth of m ore t han hundr ed m eters. S oil characteristics at some of the typical locations and in sheets (covering an area of about 25 sq km) are given in Figure 6.2.

6.3.2: Cross sections:

In or der t o unde rstand s ufficiency of da ta t o m eet t he r equirement of m ap s cale subsurface soil profiles have been studied, through different cross sections generated on the basis of borehole information. A typical example of borehole distribution, soil profile and different orientation of cross sections for one toposheet covering an area of 25 sq km. are given in Figures 6.3 (a to g). Descriptions of soil classifications as per BIS code of soil dynamics are detailed below:

CI : Inorganic clays, silty clays of medium plasticity
CL	:	Inorganic clays, silty clays, sandy clays of low plasticity
MI	:	Inorganic silts, clayey silt with medium plasticity
ML	:	Inorganic silts, silty or clayey fine sands, with slight plasticity
S	:	Sand
SC	:	Clayey sands
SG	:	Sand with gravel
SM	:	Silty sands
SM-SG	:	Silty sand and Sand with gravel
SM-SW	:	Silty sand and well graded sands, sandy soils, with little or no fines
SP	:	Poorly graded sands, sandy soils, with little or no fines
SW	:	Well graded sands, sandy soils, with little or no fines

Soil profile : Park between block 67 (ABCD) DDA colony Dilshad garden, P.S. Seemapuri. (D-3)

Water Table: 24.40

Weathered Rock : From 105M up to drill depth 107.00M

Soil profile: Akshar Dham temple (D-5)

Water Table: 6.5 M b.g.l

Rock : Could not be delineated due to adverse condition encountered below 153M and possibility of collapse of bore hole

Soil profile Near CWG hostel at J.N. Stadium, New Delhi (D-1)

Soil profile: DDA park near Bal Bharti Nursery school, Sector - 25, Rohini (D-6)

Water Table: 7.0 m. b.g.l Rock : Not encountered up to drill depth of 225M

Figure 6.2: Distribution of different types of soil in typical borehole sites and in sheets covering an area of about 25 sq km.

Figure 6.3(a):Typical distribution of boreholes in one sheet(No.38) covering an area of about 25 sq km.

Figure 6.3(b): Typical distribution of soils in one sheet covering an area of about 25 sq km inferred from borehole shown in figure6.3(a)

Figure 6.3(c):Typical 3-D cross section showing distribution in N-S and E-W direction in one sheet covering an area of about 25 sq km. inferred from boreholes shown in figure 6.3(a)

Figure6.3(d):Typical 3-D distribution of soil S -W and N -E di rection i n one s heet covering an area of about 25 s q km. inferred from bor eholes shown in figure6.3(a)

Figure6.3(e):Typical cross sections in one sheet covering an area of about 25 s q km. inferred from bore hole shown in above figure

Figure 6.3(f): Typicalcross section in other sheet covering an area of about 25 sq km.

Figure 6.3(g) Typical soil cross section (along NNE-SSW direction) of sheet no.39 covering an area of about 25 sq km.

6.4 EVALUATION OF CORRECTED SPT 'N'VALUE (N1)60

The 'Standard Penetration Test', commonly known as the 'SPT', is used for evaluation of shear wave velocity. SPT have been carried out in all boreholes, by dr iving a standard 'split spoon' sampler using repeated blows of a 63.5kg hammer falling through 762mm. The hammer was operated at the top of the bor ehole, and was connected to the split spoon sampler by rods. The split spoon sampler was lowered to the bottom of the hole, and was then driven a distance of 450mm in three 150mm intervals, and the blows were counted for each 150mm penetration. The penetration resistance (N) which is the number of blows required to drive the split spoon for the last 300mm of penetration is measured. The penetration resistance during the first 150 mm of penetration was ignored, because the soil is considered to have been disturbed. Observed 'N' value maps for 0-3m and 3-6m de pth ha ve be en ge nerated f or N CT D elhi a nd pr esented a s Maps14 & 15 respectively, which may be helpful for coarse assessment of the site condition in the field.

The SPT 'N' values thus measured in the field using Standard Penetration Test procedure have been corrected for various corrections, such as: (a) Overburden Pressure (C_N), (b) Hammer energy (C_E), (c) Borehole diameter (C_B), (d) presence or absence of liner (C_S),

(e) R od length (C_R) and (f) fi nes content (C_{fines}) (Seed et al., 1983, 198 5; Y oud et al., 2001; Cetin et al., 2004, Skempton; 1986 and Pearce and Baldwin, 2005). Corrected 'N' value i.e., (N_1)₆₀ have been obtained using the following equation

$$(N_1)_{60} = N \times (C_N \times C_E \times C_B \times C_S \times C_R)$$
(6.1)

The correction factors applied are given in tables 6.3 - 6.6.

 Table 6.3: Hammer Correction factor (CE)

Factor	Correction
Donut Hammer	0.5-1.0
Safety Hammer	0.7-1.2
Automatic-trip	0.8-1.3

Table 6.4: Correction for B.H. Diameter (CB)

Factor	Size	Correction
Borehole	65-115 mm	1.00
Diameter	150 mm	1.05
	200 mm	1.15

 Table 6.5Correction for Rod Length (CR)

Factor	Size	Correction
Rod Length	<3 m	0.75
	3-4 m	0.80
	4 -6 m	0.85
	6-10 m	0.95
	10-30 m	1.00

Table 6.6: Correction for Sampler based on method (CS)

Factor	Size	Correction
Sampling method	Standard samplers	1.00
	Sampler without liners	1.1-1.3

The formula used to find the correction for energy ratio is:

$$C_E = \frac{ER}{60\%}$$

(6.2)

Where ER (efficiency ratio is the fraction or percentage of the theoretical SPT impact energy that is actually transferred to the sampler.

A t ypical da ta s heet f or one b orehole location s howing different corrections applied on observed N value to obtain corrected N value $(N1)_{60}$ is given in Table 6.7.

Co-ordir	nates:	N 28º 37	28° 37' 29" E 76° 54' 52"										
Typical "N" Value Correction Table for Borelog of BH No. 1N, SH												o 3	
Borehole													
Depth	Field	Type of strata	Der	ısity	T.S.	E.S.	C _N	Correction Factor For				(N ₁) ₆₀	
			,	3				Hammer	Boreh	Rod	Sample		
m	N Value		gm/cc	kN/m ³	kN/m ²	kN/m ²		Effect	ole	Length	Method		
1.50	15	ML	1.76	17.60	26.40	26.40	1.00	0.70	1.05	0.75	1.00	8.27	
4.50	18	ML	1.76	17.60	79.20	79.20	1.00	0.70	1.05	0.85	1.00	11.25	
7.50	58	ML	1.77	17.70	132.30	131.81	1.00	0.70	1.05	0.95	1.00	40.50	
10.50	30	ML	1.99	19.90	192.00	162.08	1.00	0.70	1.05	1.00	1.00	22.05	
13.50	21	SM	1.85	18.50	247.50	188.15	0.71	0.70	1.05	1.00	1.00	11.02	
16.50	27	SM-SC	1.79	17.90	301.20	212.42	0.66	0.70	1.05	1.00	1.00	13.13	
19.50	41	SM-SC	1.83	18.30	356.10	237.89	0.61	0.70	1.05	1.00	1.00	18.52	
22.50	78	SC	1.87	18.70	412.20	264.56	0.57	0.70	1.05	1.00	1.00	32.80	
25.50	83	SC	2.09	20.90	481.50	304.43	0.52	0.70	1.05	1.00	1.00	31.62	
28.50	71	SC	2.10	21.00	538.20	331.70	0.49	0.70	1.05	1.00	1.00	25.42	

Table 6.7A typical datas heet for one borehole location showing different corrections applied on observed N value to obtain corrected N value $(N1)_{60}$

6.4.1 SPT 'N' value distribution:

A Bar chart showing distribution of corrected 'N' values $(N1)_{60}$ at 0-3m depth are given in figure 6.4. In Delhi N value are 2-10 at 30% sites and 11-20 at about 50% sites showing very soft soil at most of the sites.

Figure 6.4 A bar chart showing distribution of corrected SPT 'N' value (N1)₆₀ at 0-3m depth in NCT Delhi

6.5 DEVELOPMENT O F LO CAL EM PIRICAL R ELATION BETWE EN CORRECTED S PT 'N' VAL UE $(N_I)_{60}$ AND MEASURED IN-SITU S HEAR WAVE VELOCITY USING CHT&DHT

Cross H ole T est (CHT)/ D oun Hole T est (DHT) is the bestin-situ methodusedforobtainingthevariation of lowstrainshearwavevelocity with depth, but i t is not feasible to make Vs measurements at all the locations, due to requirement of drilling number of boreholes and also implication of high cost. Hence to make use of penetration measurements (SPT 'N' value) collected during ge otechnical investigations, c orrelation between in-situ *Vs* measured from geophysical techniques and penetration resistance are being done for different types of soil. S everal such empirical relations are available in literature. The most popular among them are from Japan Road Association (JRA, 1980) equations relating *Vs* and (N1)₆₀, which are given below

$$Vs = 100(N_{60})^{1/3}$$
 (JRA, 1980)- For clayey soil (6.3)

$$Vs = 80(N_{60})^{1/3}$$
 (JRA, 1980) - For Sandy soil (6.4)

In t he SeismicHazard Microzonation s tudy, besides S hear w ave v elocity, there ar e several other soil parameters required for deriving different components of microzonation and t o be collected using Geotechnical i nvestigations, w hich a lso pr ovide pe netration measurement SPT 'N' values. Geotechnical i nvestigations therefore c annot be a voided and to make use of SPT N value and avoid direct measurement of S hearwave ve locity through CHT/DHT at all planned sites, effort has been made to develop local empirical relations for different types of soil of NCT Delhi between corrected SPT 'N' value (N₁)₆₀ and directly measured shear wave velocity at common sites.

To a chieve a bove, at 19 c ommon sites S hear w ave ve locity have been evaluated usingCHT, DHT at 1.5 m de pth interval up t o the de pth of 30m at each site.SPT 'N' values have also been collected at these sites at 3.0 m depth interval up to the depth of 30m, at each site. Thus at each site 10 in-situ shear wave velocity and 10 corrected N values (N_1)₆₀ have be en obt ained f or di fferent t ypes of s oil. The S PT 'N' value collected at these 19sites and after a pplying d ifferent c orrections a s detailed above, corrected N value (N_1)₆₀ with or without applying overburden, have been obtained.

Common data set for different types of soil obtained are as follows:

Sand (SP-SM, SP, SM-SC) = 54 sets; Silt (Ml) = 38 sets; Clay (CL) = 52

On the basis of this sets of data, a n attempt has been made to generate following empirical relations using linear regression analysis for different types of soil of Delhi.

- (i) Between the Vs (*DHT*) to the corrected 'N' values, (N1)₆₀ with or without overburden correction
- (ii) Between Vs (*CHT*) to the c orrected 'N' values, (N1)₆₀ with or without overburden correction

6.5.1 Correlation between the Vs (DHT) to Corrected 'N' values (N1)₆₀for Sand (SP-SM, SP, and SM-SC):

(a) Without Overburden correction on observed N value

Regression analysis has been performed using 54data pairs of Vs obtained from DHT and corrected SPT 'N' va lue $(N1)_{60}$ for s andy s oil, collected at different de pths at s ame locations and a power fit r egression equation h as be en de veloped. As both S PT bl ow count and Shear wave velocity were measured at same depth, overburden correction has not been applied in both. The scattered plot between Shear Wave velocity obtained from DHT and corrected N value $(N_1)_{60}$, without overburden correction is shown in following Figure 6.4.

Figure 6.5 Scattered plot between $(N_1)_{60}$ without overburden correction and shear wave velocity obtained from DHT for sandy soil, with the best fit line and equation along with regression coefficient.

The regression equation developed from above dataset between V s and $(N_1)_{60}$ without overburden correction is given in following Equation 6.5,

$$Vs=91.554 (N_1)_{60}^{0.3367}$$
(6.5)

The regression coefficient comes out to $beR^2 = 0.8553$

Where, Vs is the shear wave velocity in m/s and $(N_1)_{60}$ is the corrected SPT 'N' value without overburden.

It is seen from this plot, how ever, the regression coefficient is quite good, but the scattering of data beyond SPT N value 50 is quite high. In geotechnical practices, N value beyond 50 is representing hard strata and difficult to quantify further hardness of strata. Therefore on ignoring data beyond SPT N values 50, the scattered plat further improved and is given below in Figure 6.5.

The regression equation with above dataset valid upto SPT N value 50 is as follows

$$Vs=80.686 (N_1)_{60}^{0.3895}$$
(6.6)

The regression coefficient is further improved and comes out to $R^2=0.9109$, Where, Vs is the s hear w ave velocity i n m /s a nd $(N_1)_{60}$ is t he c orrected S PT 'N' value without overburden correction.

Figure 6.6Scattered pl ot be tween $(N_1)_{60}$ up to 50, without over bur den correctionand shear wave velocity obtained from DHT for sandy soil, with the best fit line and equation along with regression coefficient.

(b) With Overburden correction on observed 'N' value

Regression analysis has also been performed between $(N1)_{60}$ and DHT valid up to 50 N counts with same 52 d ata pairs of V s values obtained from DHT and SPT corrected blow c ount f or di fferent t ypes of s andy s oil c ollected at di fferent d epths. T o s ee t he impact of ove rburden p ressure, ove rburden correction has be en a pplied in S PT b low

count. The scattered plot between Shear Wave velocity obtained from DHT and corrected N value $(N_1)_{60}$, obtained after overburden correction is shown in following Figure 6.7.

It is seen from the above plot that lower and upper bound values are very high and regression coefficient is also low. It is obvious that on application of overburden on SPT blow counts N values are standardized for particular overburden pressure and therefore, reliability is reduced. Regression equation and coefficient obtained are as follows.

The regression equitation with above dataset valid upto SPT N value 50 is as follows

$$V_{s} = 72.22 (N_{1})_{60}^{0.4797}$$
(6.7)

The regression coefficient is improved and comes out to $R^2=0.7257$

Where, Vs is the shear wave velocity in m/s and $(N_1)_{60}$ is the corrected SPT 'N' value with overburden correction in observed N Values.

Figure 6.7Scattered plot between $(N_1)_{60}$ up to 50 with over burden correctionand shear wave velocity obtained from DHT for sandy soil, with the best fit line and equation along with regression coefficient.

6.5.2 Correlation b etween *Vs (DHT)* to Corrected 'N' values (N1)₆₀ For S ilt (Ml, ML)

There are 38 data pairs of *Vs* measured from DHT and SPT corrected blow count $(N1)_{60}$ for different types of Silty soil collected at different depthsat common 19 sites have been used for generating correlation for Silt. Overburden correction for silty soil is equal to one and therefore, SPT N values are not affected. The scattered plot between Shear Wave

velocity obtained from DHT and corrected N value $(N_1)_{60}$, is shown in following Figure 6.8.

It is seen from this plot, the regression coefficient is quite good, even for SPT N values up to 80.

The regression equation with above dataset is as follows

$$Vs = 85.376(N_1)_{60}^{0.3774}$$
(6.8)

The regression coefficient is improved and comes out to be $R^2=0.9412$; Where, Vs is the shear wave velocity in m/s and $(N_I)_{60}$ is the corrected SPT 'N' value.

Figure 6.8Scattered plot between $(N_1)_{60}$ with or without over burden correctionand shear wave velocity obtained from DHT for Silty soil, with the best fit line and equation along with regression coefficient.

6.5.3 Correlation between Vs (DHT) to Corrected 'N' values (N₁)₆₀ For Clay (CL, CL-ML):

There are 52 da ta pairs of *Vs* measured from D HT and S PT c orrected blow count $(N_1)_{60}$ for different types of C layey soil collected at different depthsat common 25 sites have been used for generating correlation for Clay. However, both SPT blow count and Shear wave velocity were measured at same depth, Overburden correction for clayey soil is equal to one and therefore, SPT N values are not affected. The scattered plot between Shear W ave velocity ob tained from D HT and c orrected N value $(N_1)_{60}$, is shown in following Figure 6.9. It is seen from this plot, the regression coefficient is quite good, even for SPT N values more than 80.

The regression equation with above dataset valid upto SPT N value 50 is as follows

$$Vs = 96.856(N_1)_{60}^{0.3432}$$
(6.9)

The regression coefficient is improved and comes out to be

 $R^2 = 0.9606$ Where, *Vs* is the shear wave velocity in m/s and $(N_1)_{60}$ is the corrected SPT 'N' value.

6.5.4: Correlation between *Vs (DHT)* to Corrected 'N' values (N1)₆₀ for all types of Soil SM, ML,MI,CL:

144 da ta pairs of *Vs* and SPT corrected blow count for all types of soil collected at different depths have been used for generating general correlation for all types of soil in Delhi. As both SPT blow count and Shear wave velocity were measured at same depth, overburden correction has not be en applied in both. The scattered plot between Shear Wave velocity obtained from D HT and corrected N value $(N_1)_{60}$, without overburden correction is shown in following Figure-6.10

Figure 6.10Scattered plot between $(N_1)_{60}$ without over burden correctionand shear wave velocity obt ained from DHT for all types of soil (Sand, S ilt and Clay) collected at different de pth at c ommon sites, with the best fit line and equation along with regression coefficient.

The regression equation with above dataset valid up to SPT N value 50 is as follows

$$V_{s}=83.645 (N_{1})_{60}^{0.3806}$$
(6.10)

The regression coefficient is improved and comes out to be $R^2 = 0.9104$; Where, Vs is the shear wave velocity in m/s and $(N_I)_{60}$ is the corrected SPT 'N' value.

6.5.5 Correlation between Vs (CHT) to the corrected 'N' values (N1)₆₀ For Sand: (SP-SM, SP, and SM-SC)

(a) Without Overburden correction on SPT N

The same data set of 52 data pairs of *Vs* measured from CHT and SPT corrected blow count for different type of sandy soil collected at different depth have also been used for generating correlation between shear wave velocity measured with CHT and SPT blow count. As both SPT blow count and Shear wave velocity were measured at same depth, overburden correction has not been applied in both. The scattered plot between average Shear Wave v elocity obtained f rom C HT and c orrected N va lue $(N_1)_{60}$, without overburden correction is shown in following Figure 6.11

It is seen from above plot that scattering in data set is very high compared to relation obtained from DHT data. It is obvious that Shear wave velocity measure from CHT method is representative of a layer of particular depth as source and recorder are placed at t he s ame de pth. While i n case of D HT sincethe waveshavetotravelthroughallthelaversto r eachthe receiver, it can detect soil layers, which may go undet ected in case of CHTandhencethe resultsobtainedfromDHT testsaremorereliable.

The regression equation with above dataset valid up to SPT N value 50 is as follows

$$Vs = 168.73 (N_1)_{60}^{0.1926}$$
(6.11)

The regression coefficient is improved and comes out to be $R^2=0.2655$ Where, *Vs* is the shear wave velocity in m/s and $(N_I)_{60}$ is the corrected SPT 'N' value.

(b) With overburden correction applied on N value

The same data set of 52 data pairs of *Vs* measured from CHT and SPT corrected blow count for different types of sandy soil collected at different depths have also been used for generating correlation between average shear wave velocity measured with CHT and SPT blow count. To see the impact of overburden pressure, overburden correction has been applied in SPT blow count. The scattered plot between average Shear Wave velocity obtained from CHT and corrected N value $(N_1)_{60}$, with overburden correction is shown in following Figure-6.12.

Figure 6.12 Scattered plot be tween $(N_1)_{60}$ up t o 50 with ove r bur den correction and average s hear wave velocity obtained from CHT for s andy s oil, with the best fit line and equation along with regression coefficient.

It is seen from above plot that scattering in data set is further high compared to relation obtained f rom CHT data and S PT N value without ove rburden correction. The regression coefficient has further reduced.

The regression equation with above dataset valid up to SPT N value 50 is as follows

Vs=153.58 (N₁) $_{60}^{0.2585}$ (6.12) The regression coefficient is R²=0.2004; Where, *Vs* is the shear wave velocity in m/s and (*N*₁) $_{60}$ is the corrected SPT 'N' value.

6.5.6 Final empirical relations obtained and used for NCT Delhi

It is seen from a bove r egression a nalyses on different c ombinations t hat correlation between shear wave velocities evaluated from DHT with SPT 'N' values for sandy soil without considering over burden correction in SPT 'N' values is very good up to SPT N value 50 c ompared to CHT. The correlation obtained from DHT data for other types of soil such as Silt and Clay are also very good compared to CHT. In case of silt and clay, effect of overburden does not matter as correction factor is 1. The general correlation for all types of soil is also good compared to CHT data.

The empirical relations obtained from DHT are given below. These relations have been used f or e valuating S hear w ave ve locity from corrected SPT 'N' va lue $(N_1)_{60}$ at all geotechnical investigation sites for all type of s oil where SPT N va lues are available. Further, at all the sites soil classifications are available, therefore individual relations for Sand, Silt, and Clay have been used.

For Sand (SP-SM, SP, SM-SC)

 $Vs=80.686 (N_1)_{60}^{0.3895} (for corrected N value up to 50)$ (6.13)

For Clay (CL, CL-ML)	
$Vs=96.584 (N_1)_{60}^{0.3432}$	(6.14)
For Silt (ML, MI)	
$Vs=85.378 (N_1)_{60}^{0.3774}$	(6.15)
For all types of Soil (general relation)	
For all types of Soil (general relation)	
$Vs=83.645 (N_1)_{60}^{0.3806}$	(6.16)

6.5.7: Comparison of shear wave velocity evaluated from newly developed empirical relations for NCT Delhi and other standard relations:

The c omparison of S hear wave ve locity evaluated from different s tandard empirical relations for different types of soil and shear wave velocity evaluated from newly developed Equations (6.13,6.14, 6.15& 6.1 6) a re gi ven i n Figures 6.13(a), 6.13(b), 6.13(c) and 6.13(d). It is clear that the newly derived equations for all types of soil lies between most of the standard relation particularly of the JRA, Seed and Ideris and are matching well.

Figure 6.13 (a) Comparison of shear wave velocity evaluated from different standard relations from (N1)₆₀ values for all types of soil and evaluated from new relations developed for NCT Delhi

Figure 6.13 (b) Comparison of shear wave velocities evaluated from different standard relations from (N1)₆₀ values for SAND and evaluated from new relations developed for NCT Delhi

Figure 6.13 (c) Comparison of shear wave velocity evaluated from different standard relations from (N1)₆₀ values for Silt/Silty sand evaluated from new relations developed for NCT Delhi

Figure 6.13 (d) Comparison of shear wave velocities evaluated from different standard relations from (N1)₆₀ values for Clay evaluated from new relations developed by EREC.

CHAPTER 7

SITE CLASSIFICATION OF NCT DELHI BASED ON SHEAR WAVE VELOCITY

Site c lassification is one of t he key i ssues for t he prognosis of e arthquake ha zard parameters, because the concept and methods of site classification were put forward in the Code for seismic design of buildings in several countries and the parameters of design response s pectrum h ave be en de termined b y c onsidering s ite classification. Site classification methods a re ba sed on geologic g enesis and characteristics s uch as t he descriptions of soil characteristics, overburden thickness of soil layer and average shear wave velocity. Generally, one or several indexes are employed, and site is classified into 3 to 4 types.

The shear wave velocity profile of soil column is one of the important parameters for evaluating the dyna mic properties of s oil and u sed for classification of s ite precisely, adhering to National Earthquake Hazard Reduction Program (NEHRP, Building Seismic Safety Council 2001) and Uniform Building Code (UBC, ICBO 1994) terminology and for site response modeling as well. Indian Building codes also make use of Shear wave velocity for s ite classification and site r esponse modeling. Since a mplification is maximum only due to s oil layers present in the top 30m, s oil classification has be en proposed based on a verage shear wave velocity of top 30m s oil (V_s^{30}) (Gazetas, G. 2003).Shear wave velocity is also used for study of ground response and generation of site specific r esponse s pectra and therefore in the present study, an attempt has b een made to classify the sites of NCT Delhi based on Shear wave velocity.

There are s everal t echniques f or eva luation of s hear wave velocity based on actual measurement and also us ing empirical r elations with ge otechnical pa rameters. Accordingly a comprehensive plan for evaluation of Shear wave velocity, using different techniques was dr awn as discussed in the pr evious c hapter. In t his c hapter different technique adopted for evaluation of shear wave velocity and subsequently classification of s ites based on shear wave velocity has be en discussed. Site classification based on NEHRP scheme (BSSC, 2003) is given in following Table 7.1.

7.1 EVALUATION OF AVERAGE SHEAR WAVE VELOCITY [Vs(30)]

Several g eotechnical a nd ge ophysical t echniques ba sed on field a nd l aboratory investigations a re available t o obt ain s ub-surface s hear w ave v elocity profiles t hat include,

(i) Multi-channel Analysis of Surface Waves (MASW), (Park et al., 1999),

CHAPTER 7

SITE CLASSIFICATION OF NCT DELHI BASED ON SHEAR WAVE VELOCITY

Site c lassification is one of t he key i ssues for t he prognosis of e arthquake ha zard parameters, because the concept and methods of site classification were put forward in the Code for seismic design of buildings in several countries and the parameters of design response s pectrum h ave be en de termined b y c onsidering s ite classification. Site classification methods a re ba sed on geologic g enesis and characteristics s uch as t he descriptions of soil characteristics, overburden thickness of soil layer and average shear wave velocity. Generally, one or several indexes are employed, and site is classified into 3 to 4 types.

The shear wave velocity profile of soil column is one of the important parameters for evaluating the dyna mic properties of s oil and u sed for classification of s ite precisely, adhering to National Earthquake Hazard Reduction Program (NEHRP, Building Seismic Safety Council 2001) and Uniform Building Code (UBC, ICBO 1994) terminology and for site response modeling as well. Indian Building codes also make use of Shear wave velocity for s ite classification and site r esponse modeling. Since a mplification is maximum only due to s oil layers present in the top 30m, s oil classification has be en proposed based on a verage shear wave velocity of top 30m s oil (V_s^{30}) (Gazetas, G. 2003).Shear wave velocity is also used for study of ground response and generation of site specific r esponse s pectra and therefore in the present study, an attempt has b een made to classify the sites of NCT Delhi based on Shear wave velocity.

There are s everal t echniques f or eva luation of s hear wave velocity based on actual measurement and also us ing empirical r elations with ge otechnical pa rameters. Accordingly a comprehensive plan for evaluation of Shear wave velocity, using different techniques was dr awn as discussed in the pr evious c hapter. In t his c hapter different technique adopted for evaluation of shear wave velocity and subsequently classification of s ites based on shear wave velocity has be en discussed. Site classification based on NEHRP scheme (BSSC, 2003) is given in following Table 7.1.

7.1 EVALUATION OF AVERAGE SHEAR WAVE VELOCITY [Vs(30)]

Several g eotechnical a nd ge ophysical t echniques ba sed on field a nd l aboratory investigations a re available t o obt ain s ub-surface s hear w ave v elocity profiles t hat include,

(i) Multi-channel Analysis of Surface Waves (MASW), (Park et al., 1999),

- (ii) Spectral Analysis of Surface Waves (SASW), (Stokoe et al., 1994), and
- (iii) Cone Penetration Test (CPT)
- (iv) Down Hole Test (DHT) and Cross Hole Test (CHT)
- Using e mpirical e quations be tween S PT-Nvalues obt ained from g eotechnical borelog, and the average shear wave velocity (Fumal and Tinsley 1985; Imai and Tonouchi, 1982)

NEHRP	Description	Vs(30)
Site Class		
А	Hard rock	> 1500 m/s
В	Firm and hard rock	760 – 1500 m/s
С	Dense soil, soft rock	360 – 760 m/s
D	Stiff soil	180 – 360 m/s
Е	Soft clays Special sandy soils, eg. liquefiable	< 180 m/s
F	soils, sensitive clays, organic soils, soft clays > 36 m thick	

 Table 7.1:Site classification as per NEHRP scheme (BSSC, 2003)

Each technique has its own merits and demerits and is often employed in combination to authenticate and maintain consistency within specified uncertainty in the interpretations of different observations. In the present study of Seismic Hazard Microzonation of NCT Delhi also, a combination of different techniques have been employed for evaluation of shear wave velocity, which are described in the following sections.

- (i) Cross Hole Test (CHT) /Down Hole Test (DHT) at 25 representative sites spread over different geological domains of NCT Delhi.
- (ii) MASW at 110 sites (83 have been found suitable for the study)
- (iii) Shear wave velocity derived from empirical equations using SPT- Nvalues
- (iv) SPT N va lues obt ained dur ing unde rtaking pr oject s pecific ge otechnical investigations by drilling and collecting soil samples at 314 sites.
- (v) Besides t his newly ge nerated da ta, r eports f rom di fferent c onstruction a gencies containing S PT N values have also be en collected and suitable da ta at 120 sites have been used for evaluating Shear wave velocity and site classification.

7.1.1 Shear wave velocity evaluation from SeismicCross-HoleTest (CHT)

SeismicCross-holetestingprovidesusefulinformationondynamic soil propertiessuch as Shear wave velocity required forsite classification and further study of site-specific groundresponseanalysis, liquefactionpotentials tudies, etc.Perhapsitisbestin-situ methodusedforobtainingthevariationof lowstrainshearwavevelocitywithdepth.

In the present study Cross Hole Test (CHT) has been carried out at 25 sites spread over representative sites of different geological domains. Locations of sites are given in documentation Map -13. At each site three bore holes were drilled at spacing of 4m and 8m. Shear wave velocity has been evaluated at each spacing and average shear

wave ve locity from these two s pacing has be en us ed for t hes tudy a nd given inappended Table 7.2.

7.1.2 Shear w ave ve locity e valuation from SeismicDown-holeandUp-holeTest (DHT)

The general principle of the down-hole test is to establish the shear wave (S-wave) and Compression wave (P-wave) velocities of the soil and rock layer at selected depths. The waves are generated on the surface using a suitable source device and are detected in "receiver" bor ehole dr illed at known di stance from the source point. The wave fronts detected by the geophone in the receiver borehole are recorded by a signal enhancement seismograph. The travel time of the generated P and S wave is interpreted from the wave front recorded by the seismograph. Using the travel time and the di stance between the "source" point and the "receiver" borehole, P and S wave velocities are calculated.

In the present study the Down Hole Seismic Test (DHT) has been carried out up to a depth of 30m below existing ground level at 25 locations (Map-13) to determine shear wave velocity. The test was conducted in general accordance with ASTM D-7400. The horizontal distance between "source" point and the "receiver" point was kept 3.0 to 5.0 meter. The shear Wave velocity using DHT at 25 sites are given in Table 7.2(appended).

7.1.3 Shear wave velocity evaluation using Multichannel Analysis of Surface Waves (MASW)

The most w idely-used t echniques f or e valuation of S hear wave ve locity are S ASW (Spectral Analysis of S urface Waves) and M ASW (Multichannel Analysis of S urface Waves). The M ASW has been found to be a more efficient method for unraveling the shallow subsurface properties (Park et al., 1999; Xia et al., 1999; Zhang et al., 2004). The added advantage of MASW is its non-intrusive and less time c onsuming ge ophysical method.

In the present study of Seismic Hazard Microzonation, MASW survey at 110 sites spread over NCT Delhi has also been carried out in two phases. In the first phase MASW survey has been carried in collaboration with W adia Institute of Himalayan Geology (WIHG), Dehradun at 10 representative sites. Locations of these sites are given in Figure-7.1. In the s econd phase M ASW has be en carried at 100 sites i n c ollaboration with I ndian Institute of Technology (IIT), Roorkee. Among these 100 sites, data of 73 sites have been found s uitable a nd used f or t he s tudy. L ocations of t hese s ites are s hown i n documentation Map-13.

Figure 7.1 Locations of M ASW s ites overlaid in Geological m ap of N CT D elhi attempted in first phase at 10 sites in collaboration with WIHG, Dehradun.

7.1.3.1 Results of shareware velocity, from MASW Data at 10 representative sites

In the first phase of the study 10 representative sites at different geological domains were selected and were distributed on Alwar quartzite (JNU site, Asola site) of Delhi Super group, along the bank of Yamuna river (Akshar Dham site), and near lakes (Nazafgarh lake s ite, Bhalsawa l ake s ite) and at l ocations with t hick s ediment covers (Bahvana, Suhalpur, Ghazipur, Kirbi Cantt., etc). Locations of these sites are shown in Figure 7.1 and a lso i n do cumentation Map-13.The de tails of pr ofile obt ained a re di scussed i n following paras and a brief along with shear wave velocity at these 10 representative sites of different geological domains are given in appended Table 7.3.

7.1.3.1.1 Shear wave velocity profile at Akshar Dham Site

This site is located at the eastern end of Delhi city along the bank of river Yamuna(Figure 7.1). The site is underlain by sediments of Yamuna River with sandy clay at the surface. The shear wave velocity profile carried out in this area with station spacing of one meters shows very low shear wave velocity i.e 175m/s up to a depth of 10.5 meters and there is sudden i ncrease t o 285 m/s be low 10.5 m eters. Thus t his may r epresents a n i nterface between s tiff s oils f rom ove rlying l ow ve locity s oft soil (Figure 7.2). T he average shearwave velocity at 25 to 30m is 350m/s. The average shear wave velocity of 30 meter soil column Vs³⁰istherefore about 230m/s. As per N EHRP c lassification this s ite is characterized as Class 'D' soil.

Figure 7.2 Shear wave velocity profile obtained from MASW at Akshar Dham. The bar code shows shear wave velocity in m/s.

7.1.3.1.2 Shear w ave v elocity p rofile at Jaw aharlal N ehru U niversity (JNU) and Asola sites

The sites are located on massive and weathered Alwar quartzite rocks, which are very well exposed in an area in almost NE-SW direction in JNU (Figure 7.1). The shear wave velocity varies (600 m/s-800 m/s) at the surface to around 1200m/s at 30m depth and reaches to >2000 m/s at a depth of 50 meters (Figure 7.3 & 7.4).

Figure 7.3: Shear wave velocity profile obtained from MASW at JNU site. The bar code shows shear wave velocity in m/s.

Figure 7.4 Shear wave velocity profile obtained from MASW at Asola site. The bar code shows shear wave velocity in m/s.

In JNU area massive and compact rocks (Alwarquartzite) are exposed on the surface that iswell documented by high shear wave velocity(600 m/s-800 m/s) at the surface to >2000 m/sat a depth of 50 m eters. Therefore, the velocity of the quartzite varied from 1000 m/s to 2000 m /s (Figure 7.3). On the other hand in A sola area the profile runs along N-S direction perpendicular to joints and fractures s hows shear wave velocity ranging from 400- 800 m/s (20 m depth), 800-1100 m/s (40 m depth), 1100- 1800 m/s (40-70 m) and > 2000 m/s below 80 m depth (Figure 7.4).

From the shear wave profiles of JNU site and Asola site, it is observed that the velocity profiles which is perpendicular to the joint/fractures direction (Asola Vs profile) shows low velocity of A lwar quartzite as c ompared to the massive quartzite (JNU site V s profile). These t wo sites c an be classified as c lass 'B' (Vs>760m/s) as per N EHRP provision.

7.1.3.1.3 Shear wave velocity profile at Suhalpur site and Jasola sites

The Suhalpur site is located in Chatterpur basin which is dominated by older alluvium and on t he southern and northeastern side of the JNU location (Figure 7.1). The shear wave velocity profile shows of the order of 200-250 m/s at the top 15 m. The second layer which is also marked by Vs 300 m/s. Some dissolution features have been observed between 15m to 25m depth (Figure 7.5). The average shear wave velocity (Vs³⁰) of the soil column places these sites under class 'D' as per NEHRP classification.

Figure 7.5 Shear wave velocity profile obtained from MASW at Suhalpur site. The bar code shows shear wave velocity in m/s.

Further, it is observed that below 24 meters, the surface is undulating in nature with shear wave velocity of the order of > 400 m/s may be indicated by the presence of weathered rock material derived from nearby quartzite of D elhi S uper G roup. The J asola s ite is located northeastern side of the JNU in Chatterpur Basin, showing average shear wave velocity of 30meter [Vs(30)]around 340m/s.

7.1.3.2 Results from MASW D ata collected at 100 s ites in collaboration with I IT Roorkee

The detail profiles of shear wave velocity have been obtained at 73 sites spread over NCT Delhi. On the basis of these profiles average shear wave velocity have been estimated for different depth interval. On the basis of this average shear wave velocity for 30m soil Vs(30)has been estimated using formula gi ven as Equation 7.1. Average shear wave velocity Vs(30)evaluated from MASW at all these sites are given in Table 7.4(appended) along with shear wave velocity evaluated from different techniques.

7.1.4 Shear wave v elocity derived f rom empirical e quations using SPT N -values obtained during drilling and collecting soil samples

SPT- N values are used for evaluation of shear wave velocity using empirical relations. In the present study geotechnical investigation has been carried out at 314 sites and SPT N values have been collected at each site during the process of drilling and soil sampling. To fill up t he gap area and m eet the r equirement of s cale of the s tudy da ta f or t he 1:10,000 scale, old geotechnical investigation data of 120 sites have been collected from other construction agencies and used for the study. The SPT- N values collected from the field s tudies have be en corrected, be fore being used f or empirically e valuating s hear wave velocity and empirical relations for different types of soil of NCT Delhi have also been derived and presented in Chapter-6. The empirical relation developed for different types of soil are given in equations 6.13, 6.14, 6.15, & 6.16 and reproduced below-

For Sand (SP-SM, SP, SM-SC)

Vs= $80.686 (N1)_{60}^{0.3895}$ (for corrected N value up to 50)

For Clay (CL, CL-ML)

Vs=96.584 (N1)₆₀^{0.3432}

For Silt (ML, MI)

 $Vs = 85.378 (N1)_{60}^{0.3774}$

For all types of Soil (general relation)

Vs=83.645 (N1)₆₀^{0.3806}

From New Data

On the basis of these empirical relations developed for soil of Delhi, shear wave velocity from corrected SPT 'N' value $(N_1)_{60}$ for different depth intervals up to the depth of 30M have been evaluated at all 314 sites spread over NCT Delhi, where SPT 'N' values have been collected during geotechnical investigations.

Based on these shear wave velocities evaluated at different depths, average shear wave velocity for 30m depth (V_s^{30}) at different sites have been calculated using the following equation.

$$V_{s}^{30} = \frac{30}{\sum_{i=1}^{N} \left(\frac{di}{vi}\right)}$$
(7.1)

Where,

 d_i is thickness of the ith soil layer in meters; v_i is shear wave velocity for the ith layer in m/s and N is no. of 1 ayers i n t he t op 30 m s oil s trata w hich w ill be c onsidered i n evaluating $V_s(30)$ values.

Borehole Natural Water									Water																			
Depth	Field	Type of strata	Der	ısity	T.S.	E.S.	C _N	Correction Factor For		Correction I		Correction		Correction		Correction I		Correction Factor Fo		Correction Factor Fo		on Factor For		(N ₁) ₆₀	Thickn ess N ₁) ₆₀	nickn without ess overbur den corr(Cn)	d _i /v _i	Relation given by EREC, 85.378.X^0.3774 for MI+ML,96.856.X^0.3432 for CL,CL-ML; 80.864.X^0.3886 for SP- SM,SP,SM-SC
m	N Value		gm/cc	kN/m ³	kN/m ²	kN/m ²		Hamme r Effect			Sample Method		m															
1.50	15	ML	1.76	17.60	26.40	26.40	1.00	0.70	1.05	0.75	1.00	8.27	3.0	8.27	0.0160	189												
4.50	18	ML	1.76	17.60	79.20	79.20	1.00	0.70	1.05	0.85	1.00	11.25	3.0	11.25	0.0140	213												
7.50	58	ML	1.77	17.70	132.30	131.81	1.00	0.70	1.05	0.95	1.00	40.50	3.0	40.50	0.0086	345												
10.50	30	ML	1.99	19.90	192.00	162.08	1.00	0.70	1.05	1.00	1.00	22.05	3.0	22.05	0.0109	274												
13.50	21	SM	1.85	18.50	247.50	188.15	0.71	0.70	1.05	1.00	1.00	11.02	3.0	15.44	0.0128	234												
16.50	27	SM-SC	1.79	17.90	301.20	212.42	0.66	0.70	1.05	1.00	1.00	13.13	3.0	19.85	0.0116	258												
19.50	41	SM-SC	1.83	18.30	356.10	237.89	0.61	0.70	1.05	1.00	1.00	18.52	3.0	30.14	0.0098	304												
22.50	78	SC	1.87	18.70	412.20	264.56	0.57	0.70	1.05	1.00	1.00	32.80	3.0	57.33	0.0077	390												
25.50	83	SC	2.09	20.90	481.50	304.43	0.52	0.70	1.05	1.00	1.00	31.62	3.0	61.01	0.0075	400												
28.50	71	SC	2.10	21.00	538.20	331.70	0.49	0.70	1.05	1.00	1.00	25.42	3.0	52.19	0.0080	376												
														Σdi/vi=	0.1069	(Vs)30 = 30/0.1069=280.7												

Table 7.5 A typical data sheet, for evaluation of Shear wave velocity at one borehole site from corrected N' value, $(N_1)_{60}$

Shear wave velocity thus evaluated from corrected SPT 'N' values $(N_1)_{60}$ for different depth layers at all 314 sites using empirical relations developed for D elhi (equations 6.13, 6.14, 6.15 & 6.16), a verage shear wave velocity of 30m soil [Vs(30)] has be en evaluated using Equation 7.1 and is given in appended Table 7.4. A typical data sheet for evaluation of Shear wave velocity at one borehole location up to the depth of 30m from corrected N values is given in Table 7.5.

At these sites of NCT Delhi average shear wave velocity V_s (30) varies from 220 to 360 except at one site shear wave velocity is 368 and according to NEHRP scheme given in above Table 7.1. Thus thesoil at all these sites of NCT Delhi may be classified as class D (stiff soil) having shear wave velocity V_s (30) between 180 to 360 m/s. At one site shear wave velocity V_s (30) is 368 m/s, however very close to the extreme limit of class D soil but as per classification scheme site may be classified as Class C (dense soil to soft rock).

From old data collected from construction agencies

In or der to fill up t he gap area to meet the requirement of scale of study, geotechnical data c ollected from di fferent construction a gencies vi z. D elhi Development A uthority (DDA), C entral P ublic W orks D epartment (CPWD), D elhi J al Bord (DJB) and Delhi Metro R ail C orporation (DMRC) ha ve a lso be en s crutinized in terms of a vailable information a nd s uitability of bor e hol e l ocations. O n s crutiny, qua lity da ta o f 120

boreholes have also been used for evaluation of shear wave velocity from SPT 'N' value and subsequently for site characterization. At a few borehole locations data are around 20 to 25 meter depth only and therefore, the technique suggested by Boore (2004), has been applied t o ge t s hear w ave v elocity of r emaining de pth. The s hear w ave v elocities [Vs(30)]thus obtained are given in the appended Table 7.4.

7.2 RESULT AND DISCUSSIONS

Average Shear wave velocity of 30m soil column [V_s (30)]evaluatedat different sites of NCT Delhi, spread over the varied geological domains of NCT Delhi, using CHT, DHT, SPT 'N' value and MASW techniques at 542 s ites have been consolidated and given in Table 7.4. For a few common sites highest shear wave velocity obtained from different techniques have been included in table 7.4. These Shear wave velocities have been used for cl assification of s ites ba sed on National E arthquake H azard R eduction Program (NEHRP), Building Seismic Safety Council (2001) and Uniform Building Code (UBC, ICBO 1994) presented in Table 7.1. According to this classification, the sites of NCT Delhi, can be classified under the three categories i.e. Class 'B' (firm and hard rock) having Shear wave velocity between 760 m/s and 1500m/s (JNU site), Class 'C' (Dense soil and soft rock) having shear wave velocity 360m/s and 760 m/s (such as Asola site) and , class D (Soft soil) having Shear wave velocity between 180m/sec and 360m/s at all other sites.

Figure 7.6 Distribution of number of sites classified based on the shear wave velocity representing class interval of NEHRP classification.

A bar chart shown in Figure 7.6 gives the distribution of number of sites classified based on the s hear w ave v elocity representing class i nterval of N EHRP cl assification. This chart shows that most of the sites of NCT, Delhi fall under the category of soil Class 'D' having shear wave velocity between 180m/s and 360m/s, a few sites fall in the category of soil class 'C' having shear wave velocity between 360m/s and 760m/s. These sites are mostly located on massive and weathered Alwar quartzite rocks. At JNU site which is, also located on massive and weathered Alwar quartzite rocks, but are very well exposed in the area, the average shear wave velocity of 30 meter is about 850 m/s and therefore site may be classified as site 'B'.

7.2.1 Site classification map

Based on shear wave velocities measured and evaluated using CHT, DHT, SPT 'N' value and M ASW pr esented i n T able 7. 4, a map has be en generated for N CT D elhi and attached with report as Map-16. In order to prepare maps, discrete site specific shear wave velocity $[V_s (30)]$ values at 542 sites have be en c onverted in c ontinuous surface using Inverse Distance Weighted (IDW) i nterpolation t echnique, us ing a ppropriate parameters and cross validation so that the Root Mean S quare (RMS) values be tween predicted and actual are as minimum as possible. This is one of the most popular methods adopted by geoscientists and geographers available in GIS packages. This map represents the Site classification based on S hear wave velocity obtained for different techniques at different sites spread over NCT Delhi.

However, for site classification as discussed above, average shear wave velocity of 30 meter soil column (V_s (30)) is used, but shear wave velocity of top few meters layer play a very important role in modifying response of soil, during earthquake loading. In view of this two maps for shear wave velocities of layers 0-3 m and 3-6 m below ground level have also been generated and presented as Map 17 & map 18, respectively.

Site classification map and Shear wave velocity mapsof layers 0-3 m and 3-6 m below ground level have also been generated for each toposheet on 1: 10,000 s cale and given seerately in the form of Altus prepared for Seismic Hazard microzonation of NCT Delhi on 1:10000 scale.

7.3 Ambiguity in site classification

Analysis of MASW data shows that the sites located on Alwar quartziteof Delhi Super Group at JNU shows a shear wave velocity(Vs) varies from 770m/s at the surface to 2800 m/s at a depth of 50 meters resulting average shear wave velocity of 30 meter [V_s (30)] is 850 m/s classifying site as class 'B' type soil. Similarly the site at Asola, which is also located on massive and weathered Alwar quartzite rocks,the average shear wave velocity of 30 meter is about 700 m/s classifying site as class 'C. The geophysical investigation carried out at K amala N ehru Ridge (Seismological O bservatory of I MD) and B udha garden, both a re l ocated onA lwar quartziteof D elhi S uper G roup shows average shear wave velocity $[V_s (30)]$ 307m/s and 301 m/s respectively and classified as class 'D'. The ambiguity in shear wave velocity $[V_s (30)]$ at different locations of Alwar quartzite rocks, may be due the presence of joints and fractures at different sites, which reduces the shear wave velocity. Thus, it shows that exposed rock (quartzite) in Delhi is highly weathered and c annot be uniformly c ategorized as s ame c lass, due t o the presence of joints and fractures at different sites and may have different seismic accentuation.

There are a few sites however, shear wave velocity are in the range of class D, but close to upper limit of 1 ower class, s uch as A kshar D ham, Ghazipur and Balsawa,etc o f Yamuna r iver bank.Further, the ge otechnical i nvestigations c arried out at s even ot her sites, which are in close proximity of different parts of the ridge, encountered weathered rock after 10-15 m depth below ground level and V_s (30) explicitly cannot be evaluated for these sites. The practice is generally to classify such sites on the basis of overburden i.e. considering the depth of soil only (Bangalore Microzonation report, 2009). At these sites a verage shear wave velocity of s oil above weathered rock is a round 250 m/s and therefore these sites have also been classified as site class 'D'.

The site classification is basically used for the selection of standard response spectra of different s ite classes provided in building codes. In the present study, a s s ite specific response spectra are being provided, in which shear wave velocities of individual layers are considered and therefore a mbiguity in s ite classification m ay not y ield to w rong assessment of seismic accentuation.
CHAPTER -8

SITE RESPONSE STUDY (Part-A): EVALUATION OF PEAK FREQUENCY AND PEAK AMPLIFICATION

Site response study is important component of Seismic Microzonation. There are several methods a vailable in literature f or e stimation of s ite r esponse and us ed w orld ove r. Broadly these methods are classified as (i) Empirical Methods (ii) Experimental Methods and (iii) Numerical M ethods. The empirical and e xperimental m ethods a re us eful for evaluation of Peak frequency (f_0) and to the some extent Peak amplification (A_0) of soil above firm be drock.Numerical m ethods are us ed to predict response of s oil on gr ound surface motion for development of design response spectra, which can be used for design of building c ode; t o e valuate dyn amic s tresses & s train for evaluation of lique faction hazard, and t o d etermine t he e arthquake i nduced forces t hat c an l ead t o i nstability of earth and earth-retaining structures.

The objective of present study of Seismic Hazard Microzonation on 1: 10,000 scale is to evaluate al 1 t hese r elated parameters t o meet a ll t he ba sic objectives of high grade Seismic Hazard Microzonation such as (i) Peak frequency of soil column above bedrock (ii) P eak Amplification Factor/ratio of s oil c olumn a bove be drock (iii) P eak G round Acceleration (PGA) at surface f or di fferent pe riods of exc eedance and da mping (iv) Amplification factor of soil column (v)Spectral acceleration at different periods (vi)Site specific r esponse s pectra and therefore a com bination of experimental and num erical techniques have been adopted.

Experimental methods based on microtremors appears to be cost and time effective as a rapid screening tool for evaluation of Peak frequency and approximate estimation of Peak amplification of s oil c olumn a bove b ase r ock (Shear w ave ve locity > 1500 m/s) and therefore used in the present study for the evaluation of Peak frequencies (f₀) and Peak amplifications (A₀) at different sites spread over NCT Delhi. Site specific ground motion parameters and response spectra etc. have been evaluated using numerical technique.

The pr esent s tudy ba sed on num erical t echnique a lso pe rmits e valuation of P eak Frequency a nd P eak amplification of s oil c olumn a bove engineering be drock (Shear wave velocity 760 m/s) and therefore used for the validation of Peak frequencies obtained from experimental technique for different equivalent depths of soil column.

In view of the above, site response study has been discussed in two parts. In the present Chapter ge neral ov erview on site r esponse and evaluation of P eak frequency & P eak amplification based on experimental techniques are discussed. Evaluation of site specific parameters, r esponse s pectra us ing num erical t echnique a nd va lidation of pe ak frequencies eva luated based on experimental techniques a re di scussed in t he ne xt Chapter-9.

8.1 Field work/Data Acquisition

In the Seismic Hazard Microzonation study of NCT Delhi, experimental approach for site response studies for the evaluation of Peak frequency and peak amplification, has been a dopted resorting to techniques of Nakamura type studies on H/V ratio based on microtremor r ecord. T he s tudies has be en c onducted by de ploying D igital T riaxial Portable velocity sensor (L-4 3D) of 1Hz at 511 sites in NCT Delhi. Locations of these sites i n N CT a re pr esented i n documentation Map 13, a long with locations of other investigations c arried out for the S eismic Hazard Microzonation of N CT D elhi. Continuous wave form data at each site was collected for 1 hour. Smooth common wave form of 120 seconds was sampled from one-hour plot and 30-second data was processed after smoothening for 300 cycles.

8.2 Analysis of Data

As re gards t o analysis, Fourier t ransform s pectra for m icro tremor was computed adopting S PEC pr ogram t agged w ith S EISAN-the e arthquake an alysis s oftware developed by J ens H avskov a nd L arse O ttomoeller, I nstitute of s olid Earth P hysics, University of Bergen, Norway. The SPEC program has been customized to present data set for generating parameter file (default: spec. par) and event file (default spec. inp.); the program produces one output file ("spec.out"). The FT spectra were generated for a time window of 30 s econd o f i ndividual m icrotremor. The a dopted p rogram has f acility of diagnosing P eak F requency (fo), P eak A mplification (Ao) and obtaining f requency and amplification values at desired points on spectral ratio curves of ho rizontal to vertical component (QTS: Quasi-Transfer Spectrum) of microtremor along with error messages.

Thus in mathematical terms, the seismic signal acquired in time series A(t) is converted into frequency domain A(f) using Fast Fourier Transform(FFT) technique. This process is applied t o a ll t he t hree c omponent da ta i .e. V ertical, E W, a nd N S. T he a mplitude of horizontal component $A_E(f)$ and $A_N(f)$ is divided by vertical component $A_Z(f)$ to get the relative spectra of horizontal (EW & NS), and the root mean square average amplitude A (f) is calculated as

$$A(f) = \sqrt{\frac{\{A_E(f)/A_Z(f)\}^2 + \{A_N(f)/A_Z(f)\}^2}{2}}$$

parameters, r esponse s pectra us ing num erical t echnique a nd va lidation of pe ak frequencies eva luated based on experimental techniques a re di scussed in t he ne xt Chapter-9.

8.1 Field work/Data Acquisition

In the Seismic Hazard Microzonation study of NCT Delhi, experimental approach for site response studies for the evaluation of Peak frequency and peak amplification, has been a dopted resorting to techniques of Nakamura type studies on H/V ratio based on microtremor r ecord. T he s tudies has be en c onducted by de ploying D igital T riaxial Portable velocity sensor (L-4 3D) of 1Hz at 511 sites in NCT Delhi. Locations of these sites i n N CT a re pr esented i n documentation Map 13, a long with locations of other investigations c arried out for the S eismic Hazard Microzonation of N CT D elhi. Continuous wave form data at each site was collected for 1 hour. Smooth common wave form of 120 seconds was sampled from one-hour plot and 30-second data was processed after smoothening for 300 cycles.

8.2 Analysis of Data

As re gards t o analysis, Fourier t ransform s pectra for m icro tremor was computed adopting S PEC pr ogram t agged w ith S EISAN-the e arthquake an alysis s oftware developed by J ens H avskov a nd L arse O ttomoeller, I nstitute of s olid Earth P hysics, University of Bergen, Norway. The SPEC program has been customized to present data set for generating parameter file (default: spec. par) and event file (default spec. inp.); the program produces one output file ("spec.out"). The FT spectra were generated for a time window of 30 s econd o f i ndividual m icrotremor. The a dopted p rogram has f acility of diagnosing P eak F requency (fo), P eak A mplification (Ao) and obtaining f requency and amplification values at desired points on spectral ratio curves of ho rizontal to vertical component (QTS: Quasi-Transfer Spectrum) of microtremor along with error messages.

Thus in mathematical terms, the seismic signal acquired in time series A(t) is converted into frequency domain A(f) using Fast Fourier Transform(FFT) technique. This process is applied t o a ll t he t hree c omponent da ta i .e. V ertical, E W, a nd N S. T he a mplitude of horizontal component $A_E(f)$ and $A_N(f)$ is divided by vertical component $A_Z(f)$ to get the relative spectra of horizontal (EW & NS), and the root mean square average amplitude A (f) is calculated as

$$A(f) = \sqrt{\frac{\{A_E(f)/A_Z(f)\}^2 + \{A_N(f)/A_Z(f)\}^2}{2}}$$

A few examples of spectral ratio curves of horizontal to vertical component (QTS: Quasi-Transfer Spectrum) of microtremor along with error messages are shown in Figures 8.1 for different type of soils of NCT Delhi.

Figure 8.1A few examples of Spectral ratio curves of horizontal to vertical component (QTS: Quasi-Transfer Spectrum) of microtremor along with error messages for different types of soils of NCT Delhi.

Spectral r atio curves (QTS: Quas i-Transfer S pectrum) of hor izontal t o ve rtical component of microtremor obtained at different s oil c onditions can be grouped in s ix categories from Type A to Type F. The trend in modification of Type-A Spectral ratio curves of hor izontal t o ve rtical c omponent of microtremor with c hange i n na ture of sediment cover ultimately developing Type-F Curve as shown inFigure. 8.2. Typology of curves can be used for characterization of ground and helpful for identification of sites in conjunction w ith ge ological m ap f or un dertaking ge otechnical ge ophysical investigationsrequire for site response study using numerical techniques.

From the average r elative s pectra, the amplification factor at various peak frequencies roughly within 0.2-10Hz is c alculated with standard deviations. The maximum peak amplification factors with corresponding peak frequencies are estimated for each site and presented in Table 8.1 (Appended). On the basis of these values (a) Peak frequency (b) Peak amplification maps have been generated and presented as Map-19 & Map 20.

Figure 8.2Trend i n m odification of T ype-A Spectral r atio curves (Quasi T ransfer Spectra) of horizontal to vertical component of microtremorwith change in nature of sediment cover ultimately developing Type-F Curve.

8.3 Result and Discussions

Site R esponse parameters viz. peak frequency (f_o) and peak amplification (A_0) , of soil column above firm/seismic bedrock form the most important input in hazard evaluation and ground characterization for Seismic Hazard and Risk Microzonation. Generally, three approaches a re f ollowed t o c haracterize gr ound motions: (i) e mpirical e valuations (ii) experimental or in situ instrumental measurements and (iii) numerical modeling.

At N CT D elhi as de scribed a bove t he experimental a pproach f or evaluation of P eak Amplification a nd P eak f requency of s oil c over a bove f irm be drock (site r esponse studies) has been adopted resorting to techniques of Nakamura type studies on H/V ratio based on m icrotremor r ecord. M icrotremor based "Nakamura T ype" s tudies with H/V ratio as tool to adjudge the transfer function, is gaining importance as rapid scanning tool, especially because of i ts cos t and time ef fective na ture. These s tudies ha ve be en conducted, by de ploying Digital Triaxial Portable 1 H z velocity sensor (L-4 3D) at 511 sites spread over NCT Delhi. Continuous wave form data at each site was collected for 1 hour. Smooth common wave- form of 120 seconds was sampled from one-hour plot and 30-second data was processed after smoothening for 300 cycles. As regards to analysis, the m ethodology de scribed a bove h as be en a dopted. P eak f requency and r espective amplification at all sites are given in Table 8.1 (appended).On the basis of results of the study P eak Amplification and peak F requency maps of NCT Delhi have also generated and presented as Map 19 & 20 respectively.

8.3.1 Peak Amplification factor (A₀)

There is no una nimity a mong scientists (Bard, 2000, F ield & Jacob, 1995, L ermo and Garcia, 1994) as regards to reliability of amplification assessments based on microtremor based N akamura techniques. However, the amplification being of great significance in accentuating hazard, have be en ascertained for di fferent s ites in NCT D elhi f or qualitative a ssessment following m ethods of N akamura type based on m icrotremor by collecting data at 511 sites in NCT Delhi and methodology enumerated above.

It is evident from the maximum site a mplification factor m ap (Map 1 9) that the site response (SR) or peak amplification factor generally varies from 1-8, however, at a very few lo cations A mplification factorshave been observed m ore than 8. High values of Amplification f actors b etween4 t o 8 obs erved i n t he zone of very h igh i mpedance contrast at shallow (< 100M) depth. The areas under this zone are Chatterpur Basin, areas of Central Delhi in the domain of buried ridge proximity to ridge and covering more area in eastern site of the R idge. High amplification also observed S W part of D elhi w ith scattered small packets in western part of D elhi. Very low A mplification less than 2 observed in rocky domain of NCT Delhi. Moderate Amplification 2 to 4 observed on soft Sediment domain covering most part of NCT Delhi.

A frequency distribution of sites having different ranges of Peak amplification is shown in f igure 8. 3. O ut of 511 s ites a mplification f actor i s l ess t han 4.0 a t 338 s ites. Amplification factor at 66% sites is less than 4.0, at 17.4% sites between 4 and 4.9, at 6.6% sites between 5 and 5.9, at 5% sites between 6 and 6.9 and 1.5% sites between 7 and 8, at a very few sites Peak amplification are more than 8.

Figure 8.3 Frequency distribution of sites having different ranges of Peak Amplification factor.

8.3.2 Peak Frequency (f₀)

Variation of P eak frequency with be drock d epth which varies from 0 m t o m ore t han 300m is shown in figure 8.4.

Figure 8.4 Variation of Peak frequency with bedrock depth.

Bedrock depth map published by C GWB available in the form of counters for different depth interval has been used for identification of bedrock depth at all the 511 sites. It is difficult to ascertain precise bedrock depth at all the 511 i ndividual sites form this map and therefore peak frequencies plotted in f igure 8.4 are against the midile value of available contour interval. For example Peak frequencies shown against bedrock depth of 150m are distributed in class interval of 100 to 200 m depth.

Map 20i llustrates t he c orresponding Peak frequency contour m ap of s oil a bove f irm bedrock. It is evident from the Peak frequency mapthat the peak frequencies at different sites in NCT D elhi mos tly vary from 0.21 H t o 10H z. A t a very few sites P eak frequencies are between 0.1 to 0.2Hz. On the basis of Peak frequencies area of Delhi can be divided as (i) Low peak frequency <1.0Hzcharacterizes the domain of thick (>200m)

quaternary sediment fill area. It can further be divided in two groups (a) area with peak frequencies vary from 0.3 to 0.5 Hz, which roughly corresponds to the frequencies of 20 to 30 s tories buildings(b) area with peak frequencies vary from 0.5 to 1.0 Hz, which roughly corresponds to the frequencies of 10 to 20 stories buildings.(ii) Moderate peak frequency domain of 1.0 to 2.0 Hz, which roughly corresponds to the frequencies of 5 to 10 stories buildings(iii) high peak frequency domain of 2 to 3.5 Hz surrounding the area of R idge, w hich r oughly c orresponds t ot he f requencies of 3 t o 5 s tories buildings(iv)Very high peak frequency domain >3.5 Hz characterizes r ocky ambiance with moderator thin (<30m) sediment cover and high impedance contrast at base and the Rocky domain in ridge area, which roughly c orresponds to 1 to 2 s tories buildings. To identify exact localities to be used in the field, large scale maps have been provided. The maps are also made available in GIS format.

A frequency distribution of sites having different ranges of Peak frequency is shown in figure 8.5. It is seen from this distribution, that out of 511 sites

- (i) Peak frequency at 78 sites (15 %) are in the range of 2.1 to more than 8 Hz which roughly corresponds to the matching frequency of 1 to 5 stories buildings, which are common types of building in Delhi.
- (ii) Peak frequencies at 55 s ites (10.7%) are in the range of 1.1 t o 2.0 Hz, which roughly corresponds to the matching frequency of 5 t o 10 s tories buildings.Peak frequencies at 288 sites (54%) are in the range of 0.5Hz to 1.0Hz, which roughly corresponds to the matching frequency of 10 to 20 stories buildings.
- (iii) Peak frequencies at 46 s ites (9.8%) are in the range of 0.3Hz to 0.49Hz, which roughly corresponds to the matching frequency of 20 to 30 stories buildings.
- (iv) Peak f requencies a t 4 4 s ites (8.2%) are l ess t han 0.3H z, which r oughly corresponds to the matching frequency of high rise building more than 30 stories.

Figure 8.5: Frequency distribution of sites having different ranges of Peak Frequency.

8.4: Evaluation of Peak Frequency and corresponding Peak Amplification factor for the soil column above engineering bedrock using numerical technique

In the present study acceleration time histories have been simulated at engineering bedrock (shear w ave v elocity 760m/s) based on Uniform H azard R esponse S pectra obtained through PSHA, as discussed in Chapter-5. These time histories have been used as i nput gr ound m otion f or gr ound r esponse s tudy c onducted a t 449 sites, t hrough numerical t echniques a nd s ite s pecific gr ound m otion pa rameters i ncluding P eak frequency (first mode) and corresponding Peak amplification factor have been evaluated at these sites (Numerical technique discussed in Chapter-9). As the input ground motions have been applied at all the 449 sites at engineering bedrock, the site specific parameters including P eak frequency (first mode) a nd c orresponding P eak amplification factors, obtained are the representatives of the s oil column above engineering bedrock, which varies from 10m to 154m.

The P eak f requency (first m ode) and c orresponding P eak A mplification f actor v alues derived from ground response study using numerical technique, for the soil column above engineering bedrock at 449 sites which varies from 10m to 154m are given in Table-8.2 (Appended). Peak frequency of soil column above engineering bedrock varies from 1.0 Hz to 12H z. V ariation of pe ak frequency with engineering be drock de pth is shown in figure 8.6.

Figure 8.6 Variation of Peak frequency with engineering bedrock depth

Peak amplification factor for the soil column above engineering bedrock using numerical technique have also been evaluated at all the 449 sites and given in Table 8.2 (appended), which varies from 7 to 19. On the basis of this data set a Peak amplification map has been generated and attached as map 21.

8.5 Validation of P eak F requency and P eak am plification f actor ob tained f rom experimental study based on H/V ratio and Numerical technique

The bedrock depth in Delhi varies from 0m to more than 300m. The variation of Peak frequency with bedrock depth obtained from experimental technique is shown in figure 8.4. The engineering bedrock depth varies from 10m to about 154 m eters. The variation of Peak frequency with engineering bedrock depth obtained from numerical technique is shown i n f igure 8.6. T he figures 8.4 and 8.6 indicate t hat P eak frequencies f or comparable depth range 10 to 154 m are reasonably comparable.

Singh et al. (2002)used recordings from the Chamoli earthquake of 28 March, 1999, t o estimate s ite ef fect at t hree l ocations of C entral B uilding R esearch Institute (CBRI) network with respect to the hard site of NDI. Bansalet al. (2009)estimated the site effects at a few sites in Delhi from the earthquakes of 2001 and 2004. These studies reported amplification of the order of 10–20 at different soil sites in Delhi. Mittal et al (2011) estimated the site effect (Peak amplification) at 55different sites in Delhi using data from 13 different local and regional earthquakes, using the standard spectral ratio method and considering the site IMD Ridge (New Delhi), the reference site, and obtained significant variations in amplification factor from one place to another ranging from 3 to 25.

Recently Mittal et al. (2013a &b) used recording from the local earthquake of 5 M arch 2012 (M5.1) and e stimated s ite e ffect using the standard s pectral r atio m ethod and considering the site IMD R idge (New Delhi) the reference site, at three new sites, IIT Delhi, J awahar L al N ehru U niversity (JNU), and N ational P ower T raining I nstitute, Badarpur (NPTI). They obtained amplification, at IIT of the order of 17 at a predominant frequency of 1.2 H z., at NPTI of the order of 13 at a predominant frequency of 3.2 H z and at JNU, of the order of 5.5 at a predominant frequency of 5.0 H z. Peak amplification at nine old sites have also been estimated and reported to be the same order.

Iyengarand G hosh (2004) e stimated amplification at 17 drill hole s ites in Delhi us ing results of the standard penetration test (SPT) and reported an amplification of 2–3 at the natural frequency of the sites, varying between 0.5 and 6.0 Hz. Parvez et al.(2004) carried out a site-specific ground-motion modeling for Delhi. The response spectra ratio (RSR) computed by them for the north–south profile varies from 5 to 10 in the frequency range 2.8–3.7Hz for transverse and radial components, and for the east–west profile, the RSR varies from 3.5 to 3.7 in the frequency range 3.5–4.1 Hz. The simulated synthetic results were also compared with earthquakes recorded on soft-soil sites, and it was observed that both r esults s how c onsistency in t erms of frequency distribution (Parvez et al., 2006). Mandal et al. (2012) determined the frequency dependent soil amplification factors using Equivalent Linear Method (ELM) at 25 s ites at varying engineering bedrock depth over the Greater Delhi from a local earthquake magnitude M_L 4.3 recorded at ridge rock site. The peak amplification factors and frequencies are varies from 3.2 to 5.9 and 1.2 to 5.3 Hz repectively.

It is seen that peak f requencies (predominant f requencies) obtained from t he a bove studies are matching well with the peak frequencies obtained from the present study.For example Mittal et al. (2013a,b) obtained Predominant frequency 5.0 Hz at JNU and from the present study predominant frequencies obtained at two different sites of JNU campus are 4.86 H z (JNU N ew C ampus) and 7.96 Hz (at e xposed rock of JNU c ampus) respectively.

Peak amplification factors obtained at different sites from different studies are ranging from 3 to 25. Which are comparatively high from the values obtained from microtremor H/V ratio Nakamura technique and c omparable with values obtained from numerical technique. Nakamura technique based on H/V ratio, underestimate the peak amplification and numerical studies yield reasonable results.

In the present study Peak amplification factors at different siteshave been obtained for the soil above engineering bedrock (shear wave velocity 760 m/s), and may slightly be more for the soil column above firm bedrock (shear wave velocity 1500 m/s) due to the increase of depth. As this parameter is used for qualitative as sessment of hazard, Peak amplification factor above engineering bedrock evaluated from numerical technique may reasonably b e us ed. T hus the Peak amplification factor Map 21 may be us ed f or ascertaining Peak amplification factor for different sites of NCT Delhi.

It is seen that peak f requencies (predominant f requencies) obtained from t he a bove studies are matching well with the peak frequencies obtained from the present study.For example Mittal et al. (2013a,b) obtained Predominant frequency 5.0 Hz at JNU and from the present study predominant frequencies obtained at two different sites of JNU campus are 4.86 H z (JNU N ew C ampus) and 7.96 Hz (at e xposed rock of JNU c ampus) respectively.

Peak amplification factors obtained at different sites from different studies are ranging from 3 to 25. Which are comparatively high from the values obtained from microtremor H/V ratio Nakamura technique and c omparable with values obtained from numerical technique. Nakamura technique based on H/V ratio, underestimate the peak amplification and numerical studies yield reasonable results.

In the present study Peak amplification factors at different siteshave been obtained for the soil above engineering bedrock (shear wave velocity 760 m/s), and may slightly be more for the soil column above firm bedrock (shear wave velocity 1500 m/s) due to the increase of depth. As this parameter is used for qualitative as sessment of hazard, Peak amplification factor above engineering bedrock evaluated from numerical technique may reasonably b e us ed. T hus the Peak amplification factor Map 21 may be us ed f or ascertaining Peak amplification factor for different sites of NCT Delhi.

CHAPTER -9 SITE RESPONSE STUDY (PART-B)

EVALUATION OF SITE SPECIFIC GROUNDMOTION PARAMETERS AND RESPONSE SPECTRA AT SURFACE

The empirical and experimental methods described in the previous Chapter-8 are useful for evaluation of peak frequency and to the some extent peak amplification of soil above firm bedrock and are commonly used in lower grade studies as classification enumerated in C hapter-6. This will yield to second level S eismic H azard Microzonation studies as enumerated in methodology of S eismic H azard Microzonation in C hapter-3. The r esults can be us ed f or primary screening t ools a nd us eful f or pl anning of geotechnical/geophysical investigation required for site response study to be carried out for higher grade study of S eismic Hazard Microzonation.

The objective of highergrade SeismicHazard Microzonation study on 1: 10,000 scale is tomeet all the basic objectives of Seismic Hazard Microzonation i.e. to predict response of soil on ground surface motion for development of design response spectra, which can be used for design of building code; to evaluate dynamic stresses & strain for evaluation of liquefaction hazard and to determine the earthquake induced forces that can lead to instability of earth and earth-retaining structures. Thus the higher grade study requires evaluation of several other parameters, than Peak frequency & Peak Amplification which includedevaluation of t hecombined i nfluence of a mplitude of gr ound m otion accelerations, t heir f requency components on different s tructures at different s ites, which is represented by means of a ground response spectrum; that is plot showing the maximum response induced by the ground motion in a single-degree-of-freedom (SDOF) oscillators of di fferent f undamental pe riods, bu t h aving the s ame de gree of i nternal damping. These parameters can be evaluated through rigorous exercise of site response study based on numerical techniques.

Moreover, experimental technique provides P eak frequency of total soil column above firm bedrock. In the present study of S eismic Hazard Microzonation of NCT Delhi, the reference r ock has be en c onsidered as e ngineering be drock (shear wave ve locity about760m/s) and theinput motion has been derived at this level through PSHA study as detailed in Chapter-5. Thus it is imperative to study the effect of soil column above this rock and derive all parameters with reference to engineering bedrock.

Therefore, detailed study based on numeral technique is called for. In the present chapter numerical t echniques a re f urther de tailed and pa rameters l isted above ha ve be en evaluated and results are presented.

9.1 GROUND RESPONSE ANAL YSIS O F N CT DE LHI B ASED O N NUMERICAL METHODS

In the present studyanalytical methods based on multiple reflection theory of S waves in horizontally l ayered de posits, r eferred t o a s " 1-D a nalysis of s oil c olumnsand most widely us ed has b een a dopted. Such a soil c olumn is excited by an incoming pl ane S wave, generally considered as vertically incident. This techniqueallows computation of the seismic response of a given site providing spectral Acceleration at different periods. Peak frequencyand Peak amplification can also be as certained for t he s oil above reference rock (in this study engineering rock). The specific parameters required for such an analysis ar e shear-wave ve locity, density, and dampingof soil material for different layersand Shear modulus reduction & damping ratio curves of different soil type.

To consider non l inear b ehavior of soil equivalent linear- method that uses an iterative procedure to adapt the soil parameters (i.e., rigidity and damping) to the actual strain it undergoes h as b een adopted. Thismethod has been s hown t o p rovide a r easonable estimate of soil response and use widely in seismic microzonation studies. Site response using a bove a lgorithm has been c oded in many software. The earliest software written that uses the principle one-dimensional ground response analysis is called: SHAKE. The computer pr ogram S HAKE w as written i n 1970 -71 by D r. Schnabel and P rof. J ohn Lysmer (Schnabel et a l., 1972). This is the most widely us ed pr ogram for c omputing seismic r esponse of h orizontally l ayered s oil de posits. O ther s oftware such as SHAKE2000, SHAKE91, PROSHAKE and, DYNEQ etc are d erived from t his ba sic code and based on the same principle.

In the present study a recently de veloped c omputer pr ogramme D YNEQ, a computer Programme for Dynamic response analysis of level ground by Equivalent linear method, version 3.25 (Nozomu Yoshida and Iwao Suetomi 2004), which is similar to SHAKE and also incorporate latest development such as frequency dependent characteristics, as damping due t o s cattering e tc. has be en used. Such N on- linear analysis requires a quantitative know ledge of the actual nonlinear material be havior, which c an o nly be obtained by m eans of sophisticated laboratory tests. Some generic average curves have been proposed for different types of materialas sand or clay (Seed and Idriss, 1970 and Schnabel, 1973) and available in software database, but the actual behavior of a given soil at a given site may strongly depart from these averages. Due to thisResonant Column test on representative s amples of S and, Silt and C lay of D elhi a t di fferent de pthsto determine shear modulus and damping ratio of soil under different confining pressure etc have been conducted (detailed in following sections) and used in place of generic average curves provided in database of the software.

In D YNEQ programme some subroutines have been added at E REC to plot products, such as r esponse s pectra, F requency de pendent a mplification pl ot, e tc us ing s ingle command, to make product generation more user friendly.

9.1.1 Input required for ground response analysis

Seismic Microzonation study in higher scale requires more rigorous site specific ground response study taking care of horizontal and lateral variability of soil and their effect for input motion at that particular site. This requires generation of a realistic ground motion as input to the base rock in the present case at engineering bedrock, geological mapping which play an important role for understanding surface geological variability for planning of f urther i nvestigations, i ntensive ge otechnical a nd ge ophysical i nvestigation f or characterization of horizontal and lateral variability of soil at the site etc. The required inputs are listed below and described in following sections,

- (i) Time history (input motion)
- (ii) Index and dynamic Properties of Soil (Soil Type, Unit weight, Density, Shear wave velocity)
- (iii) Shear modulus reduction curves and damping curves
- (iv) Delineation of engineering bedrock and generation of subsurface Soil model

(v) Ground water level maps.

9.1.1.1 Time history (input motion)

A design earthquake that a dequately represents the expected ground motion that would drive the structure to its critical response, resulting in the highest damage potential is required as input motion for analysis of nonlinear problems such as response of inelastic structure by performing ground response s tudy de tailed i n pr evious sections. In the present study this has been achieved through the Probabilistic Seismic Hazard Analysis described in Chapter-5 in whichPeak Ground Acceleration, spectral acceleration values at different s ites for different periods and s ubsequent Uniform H azard Response spectra have been generated at engineering be drock level having shear wave ve locity of a bout 760m/s. These parameters have been used for simulation of ground motion time history at each borehole location sites (449 sites), as detailed in section 5.6 of Chapter -5. The time histories at each borehole locations spread over NCT Delhi have been generated for

- (i) 2% probability of exceedance in 50 ye ars for Maximum Considered earthquake (MCE) and
- (ii) 10% probability of exceedance in 50 ye ars for Design Basis Earthquake (DBE). These time histories have been used for ground response study at each site for both probabilities of excedance.

9.1.1.2 Index and dynamic properties of Soil

The static soil properties required in the 1D ground response analysis are: type of Soil, Shear strength and Unit weight, dampingfor each layers. The other parameter required is shear w ave ve locity of di fferent l ayers. As per pl an of geotechnical/geophysical investigations for seismic Microzonation of NCT Delhi described in previous Chapter- 6, geotechnical investigations have been carried out at 314 sites. To fill up the gap area old data of 108 s ites (O ut of 120 s ites us ed f or site c haracterization, a s s ome r equired parameters were not available in remaining data), collected from different agencies have also be en us ed. CHT da ta of 25 s ites and MASW have al so been used. In gr ound response analysis shear wave velocity of individual layers up to a few meter depths below ground surface play very important role. Through MASW profile, it was found difficult to evaluate variation of shear wave velocity of layers of smaller thickness such as of 3.0 meter depth as available with geotechnical data. Therefore, to avoid ambiguity, this data except for two sites lying in hard rock have not been used in ground response study.

Thus data from 449 sites, wherea borehole have been drilled mostly up to 30m depth, and at a few sites up to deeper depth till weathered rock was encountered, have been used for ground r esponse study. In each bo rehole, D isturbed & U ndisturbed Soil s amples have been collected at every 1.5 meter interval or change of strata and subsequently laboratory test for evaluation of type of soil and Index property of soil on collected soil samples was conducted. Thus about 10,000 soil samples have been collected. Type of soil has been identified and index properties of soil at 1.5m interval up to at least 30m depth spread over NCT Delhi have been obtained.

A sample copy of data sheet for one borehole indicating index properties of soil collected at different depths on the basis of laboratory test is given in Table 6.1 (C) of Chapter-6. A sample copy of data sheet for one borehole location showing different corrections applied on observed N value to obtain corrected N value $(N_1)_{60}$ is given in Table 6.6 of Chapter-6. A sample data sheet, for e valuation of S hear wave ve locity at one bor ehole s ite from corrected N' value, $(N_1)_{60}$ is given in Table 7.3 of C hapter-7. The data for the entire boreholesis available in digital form in GIS format.

9.1.1.3 Shear modulus reduction curves and damping curves

Since the analysis a ccounts for the non-linear behavior of the soils using an iterative procedure, dynamic soil properties play an important role. Such Non-linear analyses require a quantitative know ledge of the actual non linear material behavior, the shear modulus reduction curves, and damping curves which can only be obtained by means of sophisticated laboratory testsdata (cyclical triaxial, resonant column test, soiltests). Some generic average curves have be en proposed for different types of material, as s and or clay, and available in software database package, but the actual behavior of a given soil at a given site may strongly depart from these averages.

In or der t o i mprove t he a ccuracy i n r esults Resonant C olumn test on r epresentative samples of Sand, Clay and Silt of Delhi collected at different sites and at different depths to determine s hear m odulus a nd da mping r atio of s oil unde r di fferent c onfining pressure, etc have been c onducted at Indian Institute of Science, Bangalore and us ed in

place of generic average curves provided in database of the software. The details of location and sample collected for Resonant Column Test for evaluation of shear modulus and damping ratio is given in following Table9.1.

S.N.	Name of site	Latitude	longitude	Type of soil	Depth(m)
1	Mukhmalpur	28° 47′ 30″	77° 09′ 35″	Sand (SM)	3.00-3.45
2	Kundli	28° 52′ 54.4″	77 [°] 06′ 6.81″	Sand (SM)	6.00-6.45
3	Holombi Kalan	28° 48′ 45″	77° 05′ 15″	Mixed sand-clay (SM-SC)	15.00-15.45
4	Jangola Coloney	28° 50′ 30″	77° 12′ 45″	Clay (CL)	21.00-21.45
5	Kundli	28 [°] 52′ 54.4″	77° 06′ 6.81″	Silt (MI) Intermediate liquid	27.00-27.45
6	Mukhmalpur	28° 47′ 30″	77° 09′ 35″	Silt (ML)Low liquid limit)	6.00-6.45
7	Teekri Khurd	28° 49′ 8.01″	77 [°] 07 [′] 37.2 ^{′′′}	Silt (ML) Low Liquid limit	6.00-6.45

 Table 9.1Details of location and sample collected for Resonant Column test for evaluation of shear modulus and damping ratio

Typical shear modulus and damping ratio curves for Sand, Silt and Clay obtained from RCT test on soil collected at Delhi are shown in following Figures 9.1, 9.2, 9.3&9.4.

Figure 9.1 Shear modulus and damping ratio curves of soil type Sand (SM)

Figure 9.2 Shear modulus and damping ratio curve of soil type Mixed sand (SM-SC)

Figure 9.3 Shear modulus and damping ratio curves of soil type Silt (ML)

Figure9.4Shear modulus and damping ratio curves of soil type Clay (CL)

9.1.1.4 Delineation of engineering bedrock and Soil Modeling

In the present study based on pr obabilistic S eismic Hazard Analysis (PSHA) Uniform Hazard Response S pectra ha ve be en evaluated at engi neering bedrock using, Next

Generation A ttenuation R elation a nd s ubsequently the s pectrum c ompatible ground motion time histories have been generated at the engineering bed rock level having shear wave velocity 760m/s as detailed in Chapter-5.

The most important input information for the ground response analysis is a subsurface soil model that represents the variation of static and dynamic soil properties at different depth interval from engineering bedrock to the surface. Therefore, to perform ground response study, a soil column up to the engineering bedrock at which input motion is to be pl aced need t o be ge nerated. Therefore, therequirement o fs uch s tudy i s t he development of soil column, through modeling of soil up to the level of engineering bed rock depth, where input e arthquake signal of is to be applied. Engineering bed rock is defined as the soil having Shear Wave velocity about760m/s. Therefore, for further study of soil response, engineering bedrock depth is required to be delineated at each site.

This c an be achieved by dr illing bor ehole up t o e ngineering b edrock de pth, which isdepend upon the nature of the soil and will be different at different sites. In the scenario like Delhi where alluvial sediment cover ranging to the depth from outcrop to the depth of more than 300m, and soil is basically D class, the engineering rock may be expected at more than 70-80m depth at most of sites in NCT Delhi. As the level of engineering rock may be different at different sites and cannot be predetermined, therefore drilling to the depth level of e ngineering be drock cannot be pl anned i n a dvance. I t i s a lso practicallynotpossible t o dr ill num ber of bor eholes t o s uch a de pth to meet t he requirement of map scale of the study.

Moreover, t he s oil up to 30m de pth p lay ve ry i mportant r ole, as t he maximum amplification due to site effects ar e generally r ecognized to oc cur in the shallow subsurface when incident s eismic waves encounter r educed seismic ve locities near the surfaceand accordingly parameters of soil column of 30 m, such as average shear wave velocity of 30m (Vs)³⁰ is used for site c haracterization and used in different building codes (Gazetas, G., "analysis of Machine Foundation Vibrations: state-of-the-Art, 1983; IBC "international Building Code" International Code Council, 2003, BIS). In view of this, a n e xtensive pr ogramme of drilling and c ollection of s oil s amples for s oil characterization and SPT value at different depth for evaluation of Shear wave velocity have b een undertaken up to 30M de pthas per r equirement of s cale a s di scussed in chapter-4. Shearwave v elocity at each drilling sites have been evaluated at the d epth interval of 3.0m. In-situ shear wave velocity has also been obtained up to 30M depth in an interval of 1.5m depth, using CHT/DHT techniques at 25 representative sites of NCT Delhi s pread over di fferent ge ological dom ain. Shear wave ve locity however, has al so been evaluated at 110 s ites using MASW but not us ed in this component of present ground response analysis except at two sites as discussed earlier. Based on shear wave velocity data soil column of 30m depth have been generated at all 449 sits and used of delineation of engineering bedrock. The engineering bed rock level having shear wave velocity of 760m/s at d ifferent s ites ha ve be en delineated by extrapolating 30m s oil model, beyond 30m de pth by s uitable l inear r egression a nalysis. W hile pe rforming regression analysis misplaced local variations within 30m have been ignored to achieve regression coefficient (R^2) ne ar uni ty. At s ites w here i t w as not pos sible t o obt ained linearity, due to highly variable soil within 30m or ambiguity in SPT 'N' values at some level, engineering be drock d elineated at cl osest CHT/DHT site or ne arby borehole site has been considered. Linear regression analysis for Delhi is quite suitable, as variation in soil deposits beyond a few meters depth below surface within which soil response is very significant, is expected due to nor mal ge ological ageing, and is expected to be linear, because, there is no history of unusual event capable of altering the soil deposit beyond a few meter depths.Boore (2004) has also suggested almost similar type of a nalysis for extrapolation of shear wave velocity data available for shorter depth within 30m to be used for site characterization.

Two typical linearity curves, where in-situ shear wave velocity have been evaluated using CHTtechnique and at borehole sites where shear wave velocity evaluated through SPT 'N' value using empirical relation are shown in Figure 9.5.

Figure9.5 Linearity curves atSwarup Nagar (left) and Chhaterpur (right) based on shearwave v elocity evaluated f rom C HT da ta a nd N va lue da tausing empirical relations developed for Delhi.

Based on t wo of these linearity curves shown in Figure 9.5 [Swarup Nagar (left) and Chhaterpur (right) area], the soil model generated up to the engineering bedrock depth are given in Table 9.2,&9.3. On the basis of identified engineering bed rock depth at 449 sites, engineering bedrock depth map has been generated for NCT Delhi and presented as Map-22.In NCT Delhi Engineering bedrock depth varies from a few meters to 154m.

Table 9.2Soil model generated up to the engineering bedrock depth from linearity curvesbased on S hear wave velocity obtained from CHT at Swarup Nagar (SheetNo. 39), NCT Delhi shown in figure 9.5(left)

No. of layer	Depth of soil column	Thickness(m)	Average Shear wave velocity
	(m)		(Vs) m/s)
1	1.5	1.5	199
2	3.0	1.5	212
3	4.5	1.5	195
4	6.0	1.5	227
5	7.5	1.5	229
6	9.0	1.5	262
7	10.5	1.5	314
8	12.0	1.5	333
9	13.5	1.5	328
10	15.0	1.5	364
11	16.5	1.5	360
12	18.0	1.5	382

13	19.5	1.5	396
14	21.0	1.5	392
15	22.5	1.5	431
16	24.0	1.5	419
17	25.5	1.5	370
18	27.0	1.5	389
19	28.5	1.5	385
20	30.0	1.5	431
21	40.0	10	493
22	50.0	10	577
23	60.0	10	661
24	67.0	7	732
25	(Half space)	~	760

9.1.1.5 Water table

During the drilling bore hole actual water table has also been recorded at all sites and used for evaluation of soil property such as soil density etc.

9.2 Products from Ground Response study

Ground response analysis has been carried out at 499 sites spread over NCT Delhi. The parameters derived from this study are discussed in following sections.

Table-9.3Soil model generated up to the engineering bedrock depth from linearity curves based on Shear wave v elocity evaluated from SPT N value and empirical relation obtained at Chattarpur, sheet No.45, DP: 62_6, NCT Delhi shown in Figure 9.5(left)

	Donth of goil column	Thiolmore	Awara ga Shaar waxa
No. of layer	Depth of soil column	Thickness	Average Shear wave
	(m)	(m)	velocity (Vs) (m/s)
1	1.5	3	154
2	4.5	3	189
5	7.5	3	213
7	10.5	3	238
9	13.5	3	261
11	16.5	3	287
13	19.5	3	300
15	22.5	3	316
17	25.5	3	327
19	28.5	3	340
20	40.0	10	518
21	50.0	10	615
22	55.0	5	712
23	Half Space	~	760

9.2.1 Peak Ground Acceleration at Surface

Earthquake caused by s udden m ovement of the fault r eleases a gr eat d eal of e nergy, which then travels through the earth's c rust in the form of di fferent types of s eismic waves setting earth in motion. The seismic waves travel to a great distance before finally losing most of their energy generating different ground motion at different sites, owing to the di stance f rom t he s ource a nd a ttenuation r elations of t he a rea un der s tudy. At particular site, when this ground motion is subjected to the soil gets amplified due to site effects, which depends upon t he m aterial pr operties of t he s ubsurface s ediment layers, distribution s oil type, surface topography and s trength of the i ncoming s eismic motion. Peak Ground Acceleration (PGA) is a m easure of earthquake acceleration (ground shaking) on the ground surface and an important input parameter for earthquake engineering practices and used to determine the maximum horizontal forces that can be expected at particular site. The maximum a mplitude of the ground a cceleration t important input parameter.

In terms of s tructural r esponse, PGA corresponds t o t he pe ak value of t he a bsolute acceleration of a single degree of freedom (SDOF) system with infinite stiffness, that is, with a na tural pe riod of vi bration e qual t o zero. This i s t ermed as Z ero P eriod Acceleration (ZPA). An infinitely rigid structure, with zero natural period (T=0), does not deform. There is no relative motion between its mass and its base. The Mass has same acceleration as of the ground; hence, ZPA is same as Peak Ground Acceleration. For very low values of period, acceleration spectrum tends to be equal to PGA. Thus PGA can be obtained from an acceleration spectrum.

Peak gr ound a cceleration i s e xpressed i n g (the a cceleration due t o earth gravity, equivalent t o g force) a s ei ther a de cimal o r p ercentage; i n m/s^2 (1 g = 9.81 m $/s^2$); or in Gal, where 1 Gal is equal to 0.01 m/s² (1 g = 981 Gal).

In the present study based on ge otechnical/geophysical investigations and subsequently generated soil model and earthquake acceleration time histories at engineering bedrock, ground response analysis has been performed using DYNEQ software at 449 sites spread over NCT Delhifor

(i) 2% probability of exceedance in 50 year (based MCE) for 5% damping and
 (ii) 10% probability of exceedance in 50 year (based on DBE) for 5% damping.

The earthquake time history generated at engineering bedrock at each site separately for MCE a nd D BE have be en used a s i nputfor bot h, a nd ba sed on r esponse of s oil earthquake ac celeration time histories have been obtained at surface at all the sites for both period of exceedance. Time history of one such site at Alipur, for DBE is shown in

Figure 9.6. On the basis of time history generated at surface, Peak Ground Acceleration (PGA), which is the maximum amplitude of the ground acceleration time-history, can be evaluated. In the ground response study, using DYNEQ software vertical distribution of PGA at different depth layers of s oil col umn are available in output files and PGA values can directly be taken from this output file at any depth layer. Part of the output file of DYNEQ for a s ite is shown in Table 9.4. PGA at surface at this site is 3.0210 m/s²~(0.308g) and PGA at engineering be drock 67m be low gr ound is 1.0904 m/s 2 ~(0.10g).

Figure 9.6Time History at surface for site Alipur for475 yearreturn period

Table 9.4 Part of DYNEQ output file showing variation of Strong Ground Motion

 Parameters with Depth.

Part of DYNEQ output file showing variation of strong ground motion with depth							
Layer No.	Depth	Absolute Acceleration	Time	Absolute Velocity	Time	Relative Displacement	
1	0.00000e+00	-3.0214	18.4650	0.16616	24.4450	0.80074e-02	
ź	3.0000	-2.4375	10.8300	0.15238	24.4450	0.76315e-02	
3	6.0000	-2.0972	10.8250	0.13829	24.4300	0.72700e-02	
4	9.0000	-1.5817	21.4300	-0.13368	11.9400	0.69361e-02	
5	12.000	1.3612	13.4650	-0.12947	11.9400	0.65983e-02	
6	15.000	-1.3521	18.5200	-0.12330	11.9350	0.61880e-02	
7	18.000	-1.3029	16.7900	-0.11778	11.8700	0.56660e-02	
8	21.000	-1.3775	18.5450	-0.11746	11.8750	0.53355e-02	
9	24.000	-1.5230	18.5450	-0.11740	11.8850	0.49316e-02	
10	27.000	-1.4849	18.5450	-0.11700	11.8850	0.44123e-02	
11	30.000	-1.4075	16.8150	-0.11539	11.8900	0.38038e-02	
12	40.000	-1.2248	13.8500	-0.11169	11.8600	0.26169e-02	
13	50.000	-1.1260	9.9150	-0.11154	11.8500	0.14931e-02	
14	60.000	1.0750	18.8900	-0.10750	11.8450	-0.54957e-03	
15	67.000	1.0904	18.8850	-0.10426	11.8350	0.00000e+00	
	Number of spe Number of pre File name for	ion spectrum == ctrum (NAMP) dominant period - time history ratio Freq.(Laye ratio (Laye Mode = 1 Mode = 2 Mode = 3	r 0) / (Lay r 1) / (Lay r 1) / (Lay Freq. = Freq. =	ver O) Data=	4096 4096 Period = 0. Period = 0. Period = 0.	20343	

The PGA values at surface have been thus obtained for all the 449 sites for both periods of exceedance. The PGA values obtained at all the sites for

- (i) 2% probability of exceedance in 50 ye ar (based on M CE) for 5% damping and given in table 9.5 (appended).
- (ii) 10% probability of exceedence in 50 y ear (based on DBE) for 5% damping and are given in table 9.6 (appended).

9.2.1.1 Peak Ground Acceleration Maps at surface

In order t o prepare m aps, di screte s ite s pecific P GA va lues at 449 s ites have be en converted i n c ontinuous s urface us ing Inverse Distance Weighted (IDW) interpolation technique, us ing appropriate pa rameters a nd c ross va lidation s o t hat the Root M ean Square (RMS) values between predicted and actual are as minimum as possible. This is one of the most popular methods adopted by g eoscientists and geographers available in GIS packages. Using this continuous data PGA maps have been generated for

- (i) 2% probability of exceedance in 50 year (based on MCE) and
- (ii) 10% probability of exceedence in 50 year (based on DBE) and presented as Map 23& Map 24 respectively.

PGA maps for both period of exceedance have also been generated for area covered by individual t oposheets on 1: 10,000 s cale. T hus, 75 m aps c overing w hole a rea of N CT Delhi have been generated for each period of exceedance. These maps are presented in the for m of district wise Atlasconsisting of all pr oduct ma ps of S eismic H azard Microzonation for 2% probability of exceedance in 50 years (MCE) for return period of 2475 years for 5 % damping and for 10% probability of exceedance in 50 years (DBE) for return period of 475 year and for 5 % damping.

9.2.1.2 Result and discussions on Peak Ground Acceleration at surface based on MCE

PGA values for 2% probability of exceedance in 50 ye ars (MCE) for 5% damping varies between 0.168g to 0.479 g. PGA values at most of the sites are within 0.42g except at two sites, where PGA are .47g and .44g. At these two sitesimpedance contrast between f irst t wo layers below ground surface are very high. In the first s ite t he observed N value at 0 -3m de pth is 2 a nd 3 -6m depth is 24. S imilarly, shear w ave velocity of 0-3m depth is 83m/s and 3-6m is 232m/s. At another site the N value at 0-3m depth is 8, 3-6m depth is 16 and 6-9m depth is 21. Similarly, shear wave velocity of 0-3m depth is 16 and 6-9m depth is 21. Similarly, shear wave velocity of 0-3m depth is 16 is 198m/sand of 6-9m depth layer is 230 m/s. The lower PGA value less than 0.18 is in rocky a rea. This c ontrast resulted in about two times increase in PGA at surface in comparison to layer of 3m depth below ground surface. PGA values have been grouped in four classes for generation of map.

- (i) <0.18g
- (ii) >0.18g to 0.30g, with the central value 0.24g,
- (iii) >0.30g to 0.42g with the central value 0.36g and
- (iv) >0.42g.

The di stribution of P GA values at di fferent s ites a re shown in f ollowing bar c hat (Figure-9.7). Figure 9.7Indicatesthat at about 60% sites PGA values are between 0.18g to 0.30gwith central value 0.24g and at about 38% sitesPGA value is between 0.31g to 0.42g.

9.2.1.3 Uncertainty in results of P eak G round A cceleration at surface based on MCE:

As discussed in Chapter-5, strong ground motions time histories have been simulated at engineering bedrock based on Uniform Hazard Response Spectra (UHRS) obtained from Probabilistic Seismic Hazard Analysis (PSHA) at different sites.

Distribution of PGA at Surface for MCE

Figure 9.7 Distribution of P GA v alues at di fferent sites i n percentageconsidering Maximum Considered Earthquake (MCE).

These time histories have been us ed as input ground motions for ground response study and generation of time histories at surface. Subsequently PGA values at surface have be en evaluated from the se time histories. The uncertainty in each U niform Hazard Response Spectra has been presented as standard deviationi.e. Mean, Mean + sigma and Mean –sigma. In order to assess possible uncertainty in the results of PGA at engineering bedrock, at a few sites three spectrum compatible ground motion time histories have be en generated based on three Uniform H azard Response S pectra (UHRS) obtained at each site i.e. for Mean, Mean + sigma and Mean –sigma and PGA values have been evaluated. The uncertainties in PGA value thus obtained have been worked out to be on an average $\pm 0.02g$ for MCE.

The average amplification factor is around 3 and therefore, the initially introduced uncertainty of ± 0.02 g, will increaseby three times. Thus the uncertainty in PGA values at surface will be about ± 0.06 g. Keeping this uncertainty in mind the obtained PGA values have been grouped in four groups (i) <0.18g (ii) 0>.18g - .30g, with the central value 0.24g, which is e quivalent to z one factor of z one IV (IS c ode) (iii) >0.30g -0.42g withthe central value 0.36g, which is equivalent to zone factor of zone V (IS code), (iv) >0.42g as discussed above. The map presented as Map-22 has been generated based on these four groups. The map has been generated in GIS and site specific values c an be obtained a nd m ay be us ed ke eping i n m ind the a ssigned uncertainties of ± 0.06 g. Similarly large scale maps of individual topo- sheets, which will be presented in the form of Atlas, to be usedfor reading instant site specific PGA values, keeping in mind the assigned uncertainties of ± 0.06 g.

9.2.1.4 Results and discussion on Peak Ground Acceleration at surface based on DBE

PGA values for 10% probability of exceedance in 50 year (DBE) for 5% damping varies between 0.089g and 0.255 g. The distribution of PGA values at different sites are shown in following bar chat (Figure-9.8). PGA values at most of the sites are within -

Figure 9.8 Distribution of P GA values at different sites in percentage, considering Design Basis Earthquake (DBE).

0.20g except at a f ew sites where PGA values are in the range of 0.20 to 0.26g. PGA values have been grouped in four classes (i) 0.09g to 0.10g (ii) >0.10g to 0.15g with the c entral value of 0.1 25g (iii) >0.15g to 0.2 0g, with the c entral value 0.175g (iv) >0.20g to 0.26 with the central value 0.0.23.

9.2.1.5 Uncertainty in resultsof P eak G round A cceleration at surface based on DBE.

On the basis of similar exercise as done for MCE (section 9.2.1.3)the uncertainty in PGA values has been worked out to be on a n average ± 0.01 g. T he m aximum probable amplification factor discussed in the later section is around 3 and therefore, the initially introduced uncertainty of ± 0.01 g, will increase by three times. Thus the uncertainty in PGA evaluation at surface for DBE will be about ± 0.03 g. Keeping this uncertainty in mind the obtained PGA values have be en grouped in four classes (i) 0.09g - 0.1g (ii) 0.01g – 0.15g with the central value of 0.12g (iii) <0.15g –0.21g, with the central value 0.18g (iv) <0.21g –0.27 with the central value0.24. The map presented in Map-23 has been generated based on these four classes. The map has been generated in GIS and site specific v alues c an be obt ained a nd m ay be us ed ke eping i n m ind t he a ssigned uncertainty of ± 0.03 g.

9.2.2 Site Amplification factor

At particular site, whenearthquake ground motion is subjected to the soil column gets amplified due to s ite effects, which depends upon t he material properties of the subsurface sediments layers, distribution soil type, surface topography and strength of the incoming earthquake ground motion. Amplification factor of soil column is the refore ratio of strength of ground motion at surface (top layer) t ot he s trength of incomingearthquake ground motion actually applied to the bottom of the soil column (last layer).

PGA is measure of strength of ground motion and corresponds to the peak value of the absolute acceleration of a single degree of freedom (SDOF) system with a natural period of vibration equal to zero. Thus the ratio of the PGA at zero period or infinite frequency at engineering bed rock (actual input motion to the last layer) and PGA at zero period or infinite frequency at ground surface, at particular site is considered as the Amplification factor of soil column. This amplification factor is different from the Peak Amplification factor derived a t pr evious Chapter-8, w hich is f requency de pendent and correspondstothe Peak frequency of s oil c olumn and may be achi eved during the resonance.

Part of the ground response analysis output file (of DYNEQ) for a typical site is shown in Table 9.4.PGA at surface at this site is $3.0210 \text{ m/s}^2 \sim (0.308\text{g})$ and PGA at bottom layer (15^{th} layer) of the s oil c olumn 67m be low g round is $1.0904 \text{ m/s}^2 \sim (0.10\text{g})$. The amplification factor of soil column at this site is therefore 3.0210/1.0904 = 2.2.

Amplification factor has been evaluated for both input motions based on MCE and DBE at all 449 sites. Obviously, as amplification of soil column is the characteristic of soil at a particular s ite, t he a mplification factor f or both periods of exc eedance are s ame. T he amplification factors f or N CT D elhi s oil ar e less t han 4.0 e xcept a t one s ite w here amplification factor is 4.6.

A bar chart showing distribution of amplification factor at number of sites (%) is shown in Figure 9.9. The bar chart indicates that amplification factor for more than 95% sites are below 3.5.

Amplification factor at DDA Open L and near Model town which is 4.6 is because the PGA value at the top surface layer at this site is very high. Output file of ground response analysis (DYNEQ software) of this site is shown in Figure 9.9.At this site the PGA value at top surface layer is 4.6622 m/s^2 and at bottom layer PGA is 0.9848 m/s^2 .

Figure 9.9 Distribution of Amplification factor at different sites in percentage.

Thus the amplification factor is about 4.6. The PGA value at this site at surface is very high due to the impedance contrast be tween first two top layers. This is be cause, the Characteristic of soil properties, such as the N value at 0-3 m depth is 2, and 3-6m depth is 24. S imilarly, s hear w ave ve locity of 0 -3m de pth is 83m /s and 3 -6m is 232m /s, indicating loose soil at top three meter. This contrast resulted in about two times increase in PGA at surface layer of 0-3m depth in correspond to the layer of 3-6m depth below ground surface, consequently, the amplification factor has also increased.

Amplification factors have been evaluated at all the 449 sites and given in Table 9.7. In order t o prepare maps, discrete site specific amplification factors values have been converted in c ontinuous surface using Inverse Distance Weighted (IDW) interpolation technique, using a ppropriate pa rameters and cross validation s ot hat R MS values between predicted and act ual a re as minimum a spos sible. Based on these values, amplification maps f or N CT D elhi has be enge nerated and presented as Map 25. Amplification map for areas covered by individual toposheets have also been generated for all 75 toposheets and presented in the form of atlas.

9.2.3 Response spectra

Maximum Ground Acceleration (PGA), Maximum Ground Velocity (PGV), Maximum Ground Displacement (PGD), duration of significant ground shaking are the important characteristics of any ground motion, but they alone do not describe the intensity of the shaking effects of the motion, which depends also on the frequency characteristics of the motion, that influences the amplification of building motion due to the cyclic loading of ground motion. In other words, tall building with long fundamental periods of vibration will r espond di fferently t han s hort bui ldings w ith s hort pe riods of vibration. A s enumerated in Chapter –8 "site effect on damage pattern", a very high acceleration may appear to be potentially hazardous, but if it developed for only a very short period of time may cause little damage to many types of structures. On the other hand, a motion with relatively s mall a mplitude t hat c ontinues w ith a r easonably uni form f requency f or a number of second can build up damaging motion in certain type of structures.

Table 9.7 Output file of ground r esponse a nalysis for the site DDA O pen L and ne ar
Model town showing ground motion parameters obtained at different depth
along with peak frequencies of different modes.

Layer	Depth	Absolute	Time	Absolute	Time	Relative	Time	
No.		Acceleration		Velocity		Displacement		
1	0.00000e+00	-4.6622	18.4800	-0.20886	10.1100	-0.10772e-01	17.0550	
2	3.0000	-1.9659	21.4400	0.14690	21.2700	0.74090e-02	21.4250	
3	6.0000	1.6117	13.0700	0.13920	21.2600	0.68691e-02	21.4200	
4	9.0000	-1.3805	10.0150	0.13241	21.2600	0.65301e-02	21.4150	
5	12.000	-1.4523	21.4000	0.12322	21.2500	0.61573e-02	21.4100	
6	15.000	-1.4270	21.4000	0.11909	21.2300	0.56815e-02	21.4050	
7	18.000	-1.2619	21.4000	0.11684	21.2250	0.53110e-02	21.4050	
8	21.000	-1.1705	18.5650	-0.11486	11.9150	0.48648e-02	21.4050	
9	24.000	1.1573	12.1150	0.11551	21.1850	0.43445e-02	21.4000	
10	27.000	1.1494	14.9650	0.11705	21.1800	0.35837e-02	21.3950	
11	30.000	1.1114	14.9600	0.11733	21.1750	0.30153e-02	21.3850	
12	40.000	-1.0889	9.9350	0.11427	21.1700	0.21278e-02	9.9450	
13	50.000	-1.0156	9.9200	0.10971	21.1500	0.12941e-02	9.9400	
14	60.000	-0.98812	13.8150	0.10735	21.1400	0.50430e-03	9.9350	
15	67.000	-0.98484	13.8100	0.10933	21.1050	0.00000e+00	0.0000	
== Amplification spectrum == Number of spectrum (NAMP) 1 Number of predominant period 3 File name for time history amp.out Amplification ratio Freq. (Layer 0) / (Layer 0) Data= 4096 Amplification ratio (Layer 1) / (Layer 15) Data= 4096 Mode = 1 Freq. = 1.9951 Period = 0.50123 Mode = 2 Freq. = 4.2325 Period = 0.23626 Mode = 3 Freq. = 5.5153 Period = 0.18131								

The c ombined influence of t he a mplitude of ground accelerations, their f requency components and to some extent, the duration of the ground shaking on different structures is c onveniently r epresented by m eans of r esponse s pectrum (Housner, 1952; H udson, 1956 and 1979), that is, a plot showing the maximum response induced by the ground

motion i n s ingle-degree-of-freedom os cillators of di fferent f undamental pe riods, but having the same degree of internal damping.

9.2.3.1 Acceleration Response Spectra for different sites of NCT Delhi

Acceleration response spectra have been generated at 449 sites for 0 to 3 seconds, spread over NCT Delhi, represented by 75toposheets on 1:10,000 scale covering all 9 districts of NCT Delhi (i) N orth-West, Delhi (ii) N orth, Delhi (iii) N orth-East, Delhi (iv) East, Delhi (v) West Delhi (vi) South-West Delhi(vii) Central, Delhi(viii) New Delhi and (ix) South Delhi. Considering earthquake f or (a) 2% pr obability of e xceedance i n 50 years(MCE) for 5% damping and (b) 10% probability of exceedance in 50 years(DBE) for 5% damping.Typical response spectra obtained from ground response study of NCT Delhi at the site Swarup Nagar is shown in Figure 9.10for MCE and Figure 9.11for DBE. All response spectra at 449 sites for MCE and DBE are attached separately.

Figure 9.10 Acceleration Response Spectra (5% da mping) obtained f rom gr ound response s tudy of NCT D elhi at t he s ite S warupnagar (Sheet N 0.39, BHN0.11n), considering Maximum Considered Earthquake (MCE).

Figure 9.11 Acceleration Response Spectra (5% da mping) obtained f rom gr ound response s tudy of NCT D elhi at t he s ite S warupnagar (Sheet N 0.39, BHN0.11n), considering Design Basis Earthquake (DBE)

9.2.3.2 Classification of response spectra obtained for NCT Delhi

The shape of the acceleration response s pectra is greatly influenced by the local soil condition a nd l ithological distributionsubsurface s ediments. The s pectral s hape representative of a ny group of e arthquake ground motion records or ge otechnical s ite characteristics is obtained by f irst de termining the nor malized acceleration response spectrum. A normalized response spectrum is obtained by e xpressing the ordinates of a conventional s pectrum as a proportion of t he maximum ground a cceleration f or t he motion for which the spectrum was derived, or the zero-period ordinate value. Zeroperiod ordinate for all normalized spectra is therefore unity. In the present study Acceleration response spectra have be en generated at 449 sites, spread overNCT Delhicovered under area of 75 toposheets covering all 9 districts considering both MCE and DBE. In order to classify these r esponse spectra all 449 response spectra have be en normalized. A few distinguished normalized response spectra of different site conditions, generated based on MCE are given in following Figure 9.12(a,b,c,d,e,f).Normalized Response Spectra for all 449 s ites bot h f or M CE and D BE are at tached as appendix IB a nd A ppendix I IB respectively.

Figure 9.12 (c)

Figure 9.12 (a, b, c, d, e & f)A f ew di stinguished nor malized response s pectra of different s ites conditions, generated ba sed on Maximum C onsidered Earthquake (MCE).

9.2.4 Seismic Hazard Map for different period of spectral acceleration with (i) 2% probability of exceedance in 50 years for 5 % damping (based on MCE) (ii) 10% probability of exceedence in 50 yearsfor 5 % damping (based on DBE)

Acceleration response spectra at 449 sites have been generated for NCT Delhi each for a period 0 t o 3s econd for 10% pr obability of E xccedance i n 50 y ear (DBE) a nd 2% Probability of Eccedance in 50 ye ar (MCE). On the basis of these response spectra, for MCE and DBE, spectral ac celeration values for the periods of 0.1 s, 0.3 s, 0.5 s and 1.0 seconds(equivalent to frequencies of 10, 3, 2, and 1.0 Hertz) corresponds to 1,3,5 and 10 stories buildings respectivelyhave be en evaluated at all 449 sites. Spectral acceleration at each periodhasbeen evaluated a fter a veraging the values lying be tween windows of \pm 0.05 second. For example for 0.1 s econd period spectral acceleration values have be en evaluated by averaging values lying between 0.05 to .15 second.

In order to prepare hazard maps, these discrete site specific Spectral Acceleration (Sa) values f or e ach pe riod at 449 s ites have be en converted i n c ontinuous s urface us ing Inverse Distance Weighted (IDW) interpolation technique, using appropriate parameters and cross validation so that the Root Mean Square (RMS) values between predicted and actual are as minimum as possible. Using this continuous data four seismic hazard maps, have been generatedfor 0.1s, 0.3s, 0.5s and 1.0s both for DBE and MCE. These maps are attached as Map 26,27,28,and 29generated based on DB E and M ap30,31,32and 33generated based on MCE. Maps 26, 27, 28, and 29can be used to evaluate response of earthquake gr ound m otion on 1 s tory, 3 story, 5 s tory a nd 10 s tory bui ldings respectivelyconsidering,DBE and Map 30,31,32 and 33can be used to evaluate response of e arthquake gr ound motion on 1 s tory, 3 story, 5 s tory a nd 10 story bui ldings respectively, considering MCE. It may be noted that Spectral acceleration values may be reduced, when spectral accel eration values w ill be cal culated based on s moothened design response spectra generated for construction of buildings of different priority.

9.2.5 Variation of Peak Ground Acceleration Soil response with depth

Local geological conditions, characteristics of the lithological attributes and depth play significant role in ground response and variation of PGA. The significant variation in PGA is obs erved c losed t os urface be low a f ew m eter depths from ground l evel. Variation of PGA with depth at Swarup Nagar considering MCE and DBE are shown in Figure 9. 13(left p anel & right panel). It is seen from the Figure 9.13 that at this site significant variation of ground motion (PGA) is due to top about 9 m soil. At this site in case of MCE, PGA at surface is around 0.3g, which reduces to 0.15g at about 9m depth below ground level. Similarly in case of DBE, PGA at surface is around 0.15g, which reduces to 0.07 g at about 9m depth below ground level.

Figure 9.13 (left panel) and (right panel) s hows the vertical distributions of PGA at Swarupnagar, NCT Delhi, for MCE and DBE respectively.

The variation of PGA with depth at another site of sheet no.21, R ice Mill considering MCE and DBE are shown in Figure 9.14 (left panel & right panel). It is seen again that at this site also significant variation of ground motion (PGA) is due to top about 9-12 m soil. At this site in case of MCE, PGA at surface is a round 0.35g, which reduces to 0.15g at about 12m depth below ground level. Similarly in case of DBE, PGA at surface is around 0.18g, which reduces to 0.09 g at about 12m depth below ground level.

On the basis of these vertical distributions of PGA based on M CE at all the 449 sites, PGA values have been picked up for 3m below ground level and 6m below ground level. Based on these values PGA maps at 3m and at 6m below ground surface have been generated and attached as Map 34 & 35 respectively.

Figure 9.14 (left panel) and (right panel) vertical distribution of PGA at Sheet No.21, Rice Mill, NCT Delhi, considering MCE and DBE.

9.2.6 Multiplying Factors for obtaining PGA values for other damping

National s eismic ha zard ma ps in the U nited S tates, Canada and m ost of t he ot her countries are generally provide input ground motions in the form of 2% probability of exceedance in 50-year r esponse spectra f or a n assumed 5% of critical da mping. 5% damping used in the standard spectra in building code application was chosen because it is a ppropriate f or r ange of t ypical building s tructures. F or ot her s pecial s tructures, however, s uch as t hose us ed i n power-generating pl ants, da ms, t ransmission telecommunication facilities and construction that utilizes damping devices, the structure damping be e ither hi gh or 1 ower t han 5%. T o f acilitate t his Multiplying F actors f or obtaining values for other D amping are given in Table 9.8, which is based on repeated ground response study for different damping at a few representative sites. This is same as table provided in BIS code (Clause 6.4.2).

		ing i uoto			sponse s		indico io		umping
	Damping (in %)	2	5	7	10	15	20	25	30
ſ	Multiplication factor	1.38	1.00	0.89	0.80	0.71	0.66	0.62	0.60

Table 9.8 Multiplying Factors for obtaining response spectra ordinates for other Damping

9.3 DESIGN RESPONSE SPECTRA

Response spectra are used to represent seismic loading for dynamic analysis of structures. Response spectra from earthquakes or derived from ground response study a re highly irregular; very ragged with local peaks and valleys. The shapes of response spectra reflect the details of their specific frequency contents and phasing. A slight change in natural period c an l ead t o l arge va riation i n m aximum acceleration. N atural pe riod of a c ivil engineering s tructure c annot be c alculated s o pr ecisely a nd t herefore, t he de sign specifications should not very sensitive to a small change in natural period. Hence, the design r esponse s pectrum t o be us ed f or de sign s pecification s hould be a s mooth or average shape without local peaks and valleys as seen in the response spectrum. Design response s pectra a re g enerally qui te s mooth a nd us ually de termine by s moothing. averaging, or enveloping the response spectra of multiple motions. They do not represent the particular acceleration response from a single ground motion time-history, but rather they are intended to be more representative of general characteristics for a reasonable range of e xpected gr ound m otions a t a gi ven s ite. T he us e of s mooth de sign responsespectra implicitly recognizes the unce rtainty with which soil and structural properties are known by avoiding sharp fluctuation in spectral accelerations with small changes in structural period.

In earthquake r esistant s tructure, s ince s ome d amage is expected and accepted during strong shaking, design spectrum is developed considering the over strength, redundancy, and duc tility in the structure. The site may be prone to shaking from large but distant earthquakes as well as from medium but nearby earthquakes: design spectrum may also account for these as well.

In the present study Site Specific Response spectra at 449 sites spread over NCT Delhi have been derived for (i) 2% probability of exceedence in 50 years for 5% damping (ii) 10% probability of exceedence in 50 years for 5% damping. Considering the engineers requirement an attempt has be en made to convert these r esponse s pectra in Design Response S pectra us ing standard technique available i n NEHRP r ecommended provisions for Seismic regulations for New Buildings (FEMA 450) Part1:provisions 2003 edition and presented along with response s pectra for each sites so that engineers may compare both and suitably modify at their requirement.

CHAPTER-10

LIQUEFACTION STUDY IN NCT DELHI

Liquefaction is a phenomenon in which the strength and stiffness of a soil is reduced by earthquake shaking or other dynamic loading. During the liquefaction, soil loses its shear resistance, when subjected to monotonic, cyclic, or earthquake loading, and behaves like a liquid until the shear stresses acting on the soil mass are as low as the reduced shear resistance. Therefore, when liquefaction occurs, the strength of the soil decreases and, the ability of a soil deposit to support foundations for buildings are reduced and consequent to this building can overturn or sink.

Liquefaction oc curs in saturated s oils, t hat i s, s oils i n w hich t he s pace be tween soil particles is completely filled with water. This water exerts a pressure on the soil particles that i nfluences how t ightly t he particles t hemselves a re pr essed t ogether. P rior t o a n earthquake, the water pressure is relatively low. During relatively short duration of an earthquake, the rate of densification of soil is more than the drainage through the soil pores which leads to the development of excessive pore pressure which cause the soil mass to act as a heavy fluid with practically no shear strength (Park, 1979, Sladen et al., 1985).Saturated sand, coarse sand, fine sand, silty sand and even sandy silt can liquefy when t here i s i nsufficient dr ainage bounda ry a round t hem. Liquefaction c an initiate movement of 1 arge bl ocks of s oil (lateral s preading), c ausing e xtensive da mage t o manmade s tructures (Youd, 1991). Liquefaction has be en r eported i n num erous earthquakes (Seed, 1968) and has been responsible for tremendous amounts of damage in historical earthquakes around t he w orld (Yanagisawa, 1983; M orales e t a l., 1995). Recently in India liquefaction phenomena has been observed during the Bhuj earthquake of 26 January 2001(Mw 7.7) and a lot of damages were reported due to liquefaction and other ground failures (Rao and Mohanti, 2001).

The likelihood that an earthquake will liquefy a site depends on many site characteristics e.g. m ean gr ain s ize, pe rcentage of f ines (Blazquez et a l., 1980) and on t he r egional geology, w hich i nfluences t he amplification and a ttenuation of s trong ground motion amplitudes. The qualitative as sessment of liquefaction potential of s oil strata is c arried out using two approaches (i) Evaluation based on a comparison of stresses induced by an earthquake and the stress conditions causing liquefaction in cyclic laboratory tests on soil samples. (ii) E mpirical methods ba sed on measurements of i n s itu s oil s trength a nd observations of field performance in previous earthquakes.

Thus the evaluation of liquefaction is attempted in following two stages and subsequently maps are generated at different depth below ground level.

- 1. Identification of Liquefaction Susceptibility of Soil (Level A study)
- 2. Qualitative assessment of liquefaction potential, based on factor of safety (Level B study)

If based on l evel 'A' study, the soil at a particular site is not susceptible, liquefaction hazards will not occur.

The s econd step of qualitative a ssessment of liquefaction ha zard (L abel B s tudy) is basically evaluation of liquefaction potential based on F actor of S afety, which c an b e evaluated on t he basis of field be havior of s oils based on field tests (index tests) and Laboratory testing of undisturbed s amples c ollected a t different depth t hrough dr illing bore holes. Collection of undisturbed samples is difficult task and therefore liquefaction study based on field test is generally preferred.

10.1 IDENTIFICATION OF L IQUEFACTION SUSCEPTIBILITY (LEVEL A STUDY)

The first step in a liquefaction hazard evaluation (level A study) is usually the evaluation of liquefaction susceptibility of soil, based on several criteria such as Historical Criteria, Geological Criteria, Compositional Criteria (Index properties of soil), Gradation of soil, Depth of ground water table, Natural soil deposits in water bodies etc, as all soil types are notsusceptible to liquefaction.Some of the criteria used for liquefaction susceptibility of soil at Delhi are as follows:

10.1.1 Based on Geological Criteria

Soil deposits that are susceptible to liquefaction are within a relatively narrow range of geological environments (Youd, 1991). The depositional environment, susceptibility of sedimentary deposits to liquefaction as a function of type and a ge of the deposit are detailed in Table 10.1(Youd and Perkins 1978).

Liquefaction susceptibility on the basis of geological attributes of the domain has been examined. Unconsolidated Q uaternary sediment c omprising Older A lluvium (Late Pleistocene) and Newer A lluvium (Holocene) are the main geological features of the NCT Delhi. The flood plain area of Delhi is characterized by abandoned channels cut off meanders, meanders scrolls, ox-bow lakes, crevasse splays, point bars, and channel bar. These s ediments ar e susceptible for liquefaction. Thus the geological criteria m eet the requirement of possibility of liquefaction in Delhi.

	Possibility of liqu	uefaction occurrent	ce in saturated non-	-cohesive soil		
Type of deposit	<500 ys	Holocene	Pleistocene	Pre-Pleistocene		
		(<11,700 ys)	(<2,588,000 ys)	(>2,588,000ys)		
CONTINENTAL	L DEPOSITS					
Fluvial	very high	high	low	very low		
Alluvial plain	high	moderate	low	very low		
Aeolian	moderate	low	low	very low		
Marine terraces	-	low	very low	very low		
Delta	high	moderate	low	very low		
Lacustrine	high	moderate	low	very low		
Colluvium	high	moderate	low	very low		
Dunes	high	moderate	low	very low		
Loess	high	high	high	unknown		
Glacial till	low	low	very low	very low		
COASTAL ARE		I				
Delta	very high	High	low	very low		
Estuary	high	moderate	low	very low		
Beach	moderate/high	moderate/low	low/very low	very low		
Lagoon	high	moderate	low	very low		
ARTIFICIAL BA	CKFILL	1	1	1		
uncompacted	very high	-	-	-		
compacted	low	-	-	-		

Table 10.1 Susceptibility of Sedimentary deposits to Liquefaction as a function of typeand age of the deposit (Youd and Perkins 1978)

10.1.2 Based on Compositional Criteria (Index Properties of Soil)

Liquefaction typically occurs in cohesion less sands, silt, and fine-grained gravel deposits of H olocene to late P leistocene age in areas where the ground water is shallow. Some gravelly soils are vulnerable to liquefaction if encapsulation by impervious soils prevents rapid dissipation of seismically induced pore pressure. Cohesive soils with clayey content (particle size < 0.005m) greater than 15% are generally not considered susceptible to soil liquefaction.

Since l iquefaction r equires t he de velopment of excess por e pr essure, l iquefaction susceptibility is also influenced by t he c ompositional c haracteristics t hat i nfluence volume c hange be havior. C ompositional c haracteristics a ssociated w ith hi gh vol ume change t o b e a ssociated w ith hi gh l iquefaction s usceptibility. These c haracteristics

include particle s ize, s hape, and gr adation. Fine-grained soils that s atisfy each of the following f our C hinese c riteria (Wang, 1979) m ay be c onsidered s usceptible to significant strength loss

Fraction finer than 0.005 mm ≤ Liquid limit, LL ≤ Natural water content ≥ Liquidity index ≤

Under the pr esent pr oject of S eismic M icrozonation of N CT D elhi on 1: 10000 s cale, geotechnical da ta have been collected at about 449 s ites, s pread over NCT D elhi, by drilling bor ehole up t o the de pth of 30 m eter, c ollecting s oil s amples at 1.5m de pth interval and SPT at 3.0 meter depth interval. Laboratory investigation on c ollected soil samples have been carried out for evaluation of soil type and ot her index properties of soil, such a s gr ain s ize di stribution (particularly t he f ines c ontent), plasticity, uni t weight, and moisture content etc. A typical data sheet of one borehole location indicating soil properties at different depth is shown in Table 10.2.

Based on data, at 449 sites, distribution of soil type indicating Non-liquefiable type (CL, CI, and CH) and Liquefiable Type (SP, SM, ML, CL-ML) at different depth is shown in Figure 10.1 . T he Figure 10.1 indicates t hat about a t 80% l ocations s oil t ype i s susceptibleto liquefaction at all depth range. Other c ompositional criteria also meet the requirement of liquefaction susceptibility at many sites.

Figure 10.1Distribution of s oil type indicating Non-liquefiable type (CL,CI, CH) and Liquefiable Type (SP, SM,ML,CL-ML) at different depth

s	ioil classi	fication	Natural Moisture	Specific		Relative		Me	chanical .	Analys	is			olidati Test	Con	sistency	Limit
Depth of Strata	Soil Group	Soil Description		Gravity	Density (gm/cc)	Density (%)	Gravel (%)	Coarse Sand (%)	Medium Sand (%)	Fine Sand (%)	Silt (%)	Clay (%)	Cc	eo	Liquid limit (%)	Plastic limit (%)	Plasticity index (Pl)
0.00-1.50	-	Silty Sand	-	-	-	-		-	-	-	-	-			-	-	-
1.50-3.00	SM	Silty Sand	-	-	-	-	2.35	6.74	11.47	52.27	27. 1 7	0.00			23	NIL	NP
3.00-4.50	SM	Silty Sand	18.19	2.67	1.79		4.08	7. 7 8	10.09	55.08	22.97	0.00			24	NIL	NP
4.50-6.00	SM	Silty Sand					2.38	6.58	11.24	50.24	29.56	0.00			23	NIL	NP
6.00-7.50	SM	Silty Sand	19.90	•	1.83	62	4.08	8.40	13.44	46.07	28.01	0.00			25	NIL	NP
7.50-9.00	SM	Silty Sand	-	•			3.24	7.49	14.69	45.78	28.80	0.00			24	NIL	NP
9.00-10.50	SM	Silty Sand	21.11		1.86		3.28	9.06	15.08	44.90	27.68	0.00			27	NIL	NP
10.50-12.00	SM-SC	Silty Sand with Clay	-	-			0.00	8.24	13.74	36.54	34.07	7.4 1			28	21	7
12.00-13.50	SC	Silty Sand with Clay	19.91	2.72	1.87		0.00	8.84	12.86	38.06	31.99	8.25	0.13		27	19	8
13.50- 1 5.00	SM-SC	Silty Sand with Clay	-	-	-		1.24	7.49	13.28	35.65	35.11	7.23			26	19	7
15.00- 1 6.50	SM-SC	Silty Sand with Clay	21.14	-	1.93		1.28	5. 0 8	14.08	33.36	39.88	6.32			27	21	6
16.50-18.00	SM-SC	Silty Sand with Clay	-	-	-		1.19	4.68	12.87	34.28	40.70	6.28			27	21	6
18.00-19.50	SC	Silty Sand with Clay	19.54	-	1.92		0.00	5.89	13.92	36.07	34.28	9.84			29	20	9
19.50-21.00	SM-SC	Silty Sand with Clay	-	-	-		0.00	4.68	11.47	37.68	38.72	7.45			27	20	7

 Table 10.2 A typi cal d ata s heet o f one bo rehole loc ation indicating soil properties at different depth

10.1.3 Depth of Ground Water Table

Susceptibility of liquefaction also depends upon its degree of saturation and therefore water table play an important role in deciding the susceptibility of soil. The soil located above the water table is unsaturated and hence may not liquefy. Therefore, for those locations, where the depth of water table is very deep, the liquefaction susceptibility will be less. However, as the water table ke eps on c hanging, the liquefaction susceptibility will al so fluctuate and therefore d eep water table should not be taken as criteria for deciding further study of liquefaction hazard.

Water table distribution during post monsoon period of 2010 s ourced Central Ground Water Board (CGWB) is shown in Figure 10.2. Water table at more than 50% of bore holes is below 10m also indicating susceptibile to liquefaction.

Figure 10.2 Ground water table distributions at different depth at 449 l ocations where geotechnical investigations have been carried out.

10.2 EVALUATION OF LIQUEFACTION POTENTIAL (LEVEL B STUDY)

Liquefaction s usceptibility of s oil in D elhi has been studied based on a bove criteria (10.1) and f ound t hat, most of t hese c riteria i ndicate t hat s oil t ype i n N CT D elhi i s susceptible t o l iquefaction a nd t herefore further s tudy f or qualitative a ssessment of liquefaction potential based on F actor of safety (Level B study) has been carried out.A simplified procedure(Seed and I driss, 1971) and subsequent revisions of the simplified procedures (Seed et al., 1983, 1985; Youd and Idriss, 2001; Idriss and Boulanger, 2004; Cetin et al., 2004), based on the use of empirical correlations with standard penetration tests (SPT) is widely used. In this method two variables are required for the assessment of liquefaction potential.

- (a) The seismic demand of a soil layer which is represented by a Cyclic Stress Ratio (CSR).
- (b) The capacity of soil to resist liquefaction represented by Cyclic Resistance Ratio (CRR).

On the basis of these two variables, Factor of safety against liquefaction can be evaluated based on the following relation

$$FS = \left(\frac{CRR_{7.5}}{CSR}\right) MSF \tag{10.1}$$

If the Cyclic S tress R atio (CSR)caused by an earthquake is greater than the C yclic Resistance R atio (CRR) of insitu soil then FS will be less than 'one' and liquefaction could occur during an earthquake. A factor of safety greater than one indicates that the liquefaction resistance exceeds the earthquake loading, and therefore liquefaction will not be expected. The hi gher f actor of safety therefore, means that s oil is having m ore resistance to liquefaction.

10.2.1 Evaluation Cyclic Stress Ratio (CSR)

The excess pore pressure generation to initiate liquefaction depends on the amplitude and the duration of the earthquake induced cyclic loading. In the cyclic stress approach the pore pr essure g eneration is r elated to the cyc lic s hear s tresses, he nce the ear thquake loading is represented in terms of cyclic shear stresses. The earthquake loading in terms of uni form cyclic s hear s tress a mplitude has be en evaluated by us ing S eed and I driss (1971) simplified approachand subsequent revisions of the simplified procedures (Seed et al., 1983, 1985; Y oud and I driss, 2001; I driss and B oulanger, 2004; C etin et al., 2004), based on t he use of empirical c orrelations with standard penetration tests (SPT) given below:

Cyclic Stress Ratio (CSR) =
$$0.65 \left(\frac{a_{\text{max}}}{g}\right) \left(\frac{\sigma_{vo}}{\sigma_{vo}'}\right) r_d$$
 (10.2)

In this equation 0.65 $\frac{a_{\text{max}}}{g}$ represents 65 % of the peak cyclic shear stress, a_{max} is peak

ground surface acceleration, g is the acceleration due gravity, σ_{vo} and σ_{vo}' are the total and effective vertical stresses and r_d = stress reduction coefficient or depth reduction factor which account for flexibility of the soil column.

To adjust the equivalent number of stress cycles in different magnitude earthquakes, the equivalent uniform shear stress induced by the earthquake ground motion generated by an earthquake ha ving a m oment m agnitude M = 7.5 i.e. $(CSR)_{M = 7.5}$ are given by the following equation (10.3).

$$(CSR)_{M=7.5} = 0.65 \left(\frac{\sigma_{vo} a_{\max}}{\sigma_{vo}}\right) \frac{r_d}{MSF} \quad (10.3)$$

Where, MSF is the magnitude scaling factor.

This e quation has been used for the evaluation of CSR for the earthquake of moment magnitude 7.6, the Maximum Credible Earthquake (MCE) evaluated from Probabilistic Seismic Hazard Analysis for the area, on the basis of PSHA study described in previous chapters.Using the a bove equation CSR has been evaluatived at all the 449 s ites at different depth h aving liquefiable soil.A t ypical i llustration of s pread sheet f or t he computation of CSR a long with ot her pa rameters required f or c omputation of FS is depicted in Table 10.3.

Lat.	Log.	Sheet No.	DP No.	dept h	Soil type	N Obs.	(N1)60	FC (%)	d (N1) 60	N <u>corr</u> (N1) 60cs	WT (CG WB)	ρ	T Overb urden	Eff. Over burden	CRR 7.5	PGA	rd	CSR	М	MSF _exp	CSR7 .5_ex p	CRR7 .5(M od)Cs	FS- mod _exp
28.62	76.91	3	1n	1.5	ML	15	8.27	58.39	5.61	14	10	1.76	25.89	25.89	0.10	0.1385	0.99	0.09	7.57	0.98	0.09	0.15	1.61
28.62	76.88	3	1.14	1.5	SM	14	11.63	42.81	5.60	17	10	1.73	25.45	25.45	0.13	0.1572	0.99	0.10	7.57	0.98	0.10	0.18	1.75
28.61	76.90	3	2.14	1.5	ML	15	8.27	54.23	5.61	14	10	1.7	25.30	25.30	0.10	0.1442	0.99	0.09	7.57	0.98	0.09	0.15	1.55
28.61	76.92	3	3.14	1.5	ML	22	12.13	52.90	5.61	18	10	1.75	25.74	25.74	0.13	0.1487	0.99	0.10	7.57	0.98	0.10	0.19	1.90
28.61	76.89	3	9' ! 4	1.5	ML	22	12.13	55.80	5.61	18	10	1.8	26.18	26.18	0.13	0.1356	0.99	0.09	7.57	0.98	0.09	0.19	2.09
28.60	76.90	3	10 4	1.5	ML	18	9.92	55.90	5.61	16	10	1.8	26.04	26.04	0.11	0.1573	0.99	0.10	7.57	0.98	0.10	0.17	1.57
28.60	76.91	3	11.14	1.5	ML	17	9.37	57.31	5.61	15	10	1.4	21.04	21.04	0.11	0.1678	0.99	0.11	7.57	0.98	0.11	0.16	1.43
28.60	76.89	4	17' ! 4	1.5	ML	22	12.13	55.64	5.61	18	10	1.8	26.04	26.04	0.13	0.1411	0.99	0.09	7.57	0.98	0.09	0.19	2.00
28.56	76.90	4	18.14	1.5	SM	15	12.89	36.83	5.54	18	5	1.4	20.74	20.74	0.14	0.1708	0.99	0.11	7.57	0.98	0.11	0.20	1.72
28.60	76.92	4	19' 4	1.5	ML	14	7.72	58.98	5.60	13	10	1.7	24.86	24.86	0.09	0.1731	0.99	0.11	7.57	0.98	0.11	0.14	1.24
28.58	76.88	4	25.14	1.5	SM- SC	15	12.52	43.59	5.60	18	10	1.7	24.86	24.86	0.14	0.1546	0.99	0.10	7.57	0.98	0.10	0.19	1.87
28.58	76.90	4	26!4	1.5	SM	28	23.03	35.29	5.51	29	10	1.8	26.92	26.92	0.26	0.1292	0.99	0.08	7.57	0.98	0.08	0.39	4.52

 Table 10.3 Typical spread sheet f or the c omputation of C RR, CSR, MSF and ot her Parameters required for computation of FS.

10.2.1.1 Evaluation of Stress Reduction Coefficient ' r_d ,

The basis of the simplified CSR equation is Newton's second Law of motion (i.e. force is equal to mass times acceleration), which assumes rigid body motion. In reality, the soil column is not a rigid body and behaves in a very non-linear fashion, therefore Seed and Idriss (1971) introduced ' r_d 'to account for the fact that the soil column is a deformable body.

For the evaluation of stress reduction coefficient many correlation are available which are discussed in detail in a 1996 NCEER workshop report (Youd et al. 2001). Youd et al. (2001) recommended that for routine practice and non-critical projects. The equations given by Liao and Whitman (1986) may be used to estimate average values of r_d , which isgiven below.

 Where, z is the depth below ground surface in meters. Some investigators have suggested additional equations f or estimating r_d at greater depths (Robertson and Wride ,1998), but e vulation of liquifaction at t hese greater depths, is be youd the depths where t he simplified procedure has been verified and where routine applications should be applied.

Mean values of r_d calculated from the Equations 10.4 & 10.5 a re plotted in following Figure 10.4, along with the mean and range of values proposed by Seed and Idriss (1971). The mean curve plotted in Figure 10.3 .has been approximated by the following equation (Youd and Idriss, 2001) and yields essentially the same values for rd as equation 10.4 & 10.5. This equation has been used for the evaluation of rd in the present study

$$r_{d} = \frac{\left(1.000 - 0.4113z^{0.5} + 0.04052z + 0.001753z^{1.5}\right)}{\left(1.000 - 0.4177z^{0.5} + 0.05729z - 0.006205z^{1.5} + 0.001210z^{2}\right)} (10.6)$$

Where z is the depth beneath ground surface in meter

Figure 10.3 The ' r_d ' relationship adopted by Youd et al. (2001), along with approximate average values from Equations 10.4 & 10.5

The liqufaction study has been carried out for 0-3m, 3-6m, 6-9m, 9-12m and 12 -15m depths. A typical illustration of spread sheet for the computation of r_d along with other parameters r equired f or c omputation of FS is depicted in Table 10. 3. The r d value calculated for different representative depths are given in Table 10.4

1	S.N.	Depth interval(m)	al(m) Actual depth where data				
			has been collected(m)				
	1	0-3	1.5	0.99042			
	2	3-6	4.5	0.96907			
Ī	3	6-9	7.5	0.943207			
	4	9-12	10.5	0.894397			
	5	12-15	13.5	0.81068			

Table 10.4Stress r eduction Coefficient' r_d ' value cal ucted for different r epresentative depths

10.2.1.2 Evaluation of Magnitude Scaling Factor MSF:

The magnitude s caling factor, M SF, has be en u sed t o a djust t he i nduced C SR during earthquake magnitude M to an equivalent CSR for an earthquake magnitude, M7.6. The MSF is thus defined as.

 $MSF = CSR_M / CSR_{M=7.6}$

Thus, MSF provides an approximate representation of the effects of shaking duration or equivalent number of stress cycles. Values of magnitude scaling factors were derived by combining: (1) correlations of the number of equivalent uniform cycles versus earthquake magnitude, and (2) laboratory-based relations between the cyclicstress ratios required to cause liquefaction and the number of uniform stress cycles.

Seed and Idriss (1982) developed a set of MSF from average numbers of loading cycles for va rious e arthquake magnitudes a nd l aboratory t est r esults. O n r e-evaluating t he original data Idriss defined a revised set of magnitude scaling factors which are defined by the following equation:

 $MSF = 10^{2.24} / Mw^{2.56}(10.7)$

Where, M_W is the Moment Magnitude

Idriss (1999) a gain r e-evaluated the MSF e quation, based on r esults of c yclic t ests on high qua lity s amples obt ained by f rozen s ampling t echniques. T he MSF r elation produced by this re-evaluation was expressed by Idriss (1999) as:

$$MSF = 6.9 \exp\left(-\frac{M}{4}\right) - 0.058$$
 (10.8)
MSF <= 1.8

Where M is the earthquake magnitude

There are several other relations such as Ambraseys (1988) scaling factors, A rango (1996) scaling factors, Andrus and S tokoe (1997) scaling factors and Y oud and N oble (1997) scaling factors. Detailed discussion and comparison of these scaling factors are available in Youd et al. (2001) and Bhandari et al. (2003). Figure 10.4 shows values of Magnitude S caling F actor, pr oposed by various i nvestigators a long with values of Magnitude Scaling Factor obtained from Equation 10.8.

Figure 10.4 Magnitude Scaling Factor, MSF, values proposed by various investigators In the present study of Seismic Hazard Microzonation of NCT Delhi, values of MSF have been evaluated using re-evaluated relation proposed by Idriss (1999) as given in Equation 10.8 for the Maximum C redible E arthquake of Mw7.6, e valuated from P robabilistic Seismic H azard Analysis f or t he ar ea at alls ites s pread over N CT D elhi at different depths having liquefiable soil. A typical illustration of spread sheet for the computation of MSFalong with other parameters required for computation of FS is depicted in Table 10.3.

10.2.1.3 Evaluation of total and effective vertical Stresses

Total stress

The total vertical stress at a point, \mathbf{m} , on average, is the weight of everything above that point per unit area. The vertical stress beneath a uniform surface layer with density $\boldsymbol{\rho}$, and thickness '**h**' is:

$$\sigma_v = \rho g_{\rm h} \tag{10.9}$$

Where 'g' is the acceleration due to gravity.

The effective vertical stress (σ_v)

The effective vertical stress (σ_v) is the combined effect of total stress and pore pressure that c ontrols s oil be haviour s uch a s s hear s trength, compression, and d istortion. The difference be tween the total s tress and the por e pr essure (u) is the effective vertical stress σ' .

 $\sigma_{v} = \sigma_{v-u} \tag{10.10}$

A typical illustration of spread sheet for the computation of vertical stresses, along with other parameters required for computation of FS is depicted in Table 10.6.

10.2.2 Evaluation Cyclic Resistance Ratio (CRR)

Liquefaction resistance of soil depends on how close the initial state of soil is to the state corresponding to "failure". The l iquefaction resistance can be c alculated based on laboratory tests and also in situ tests. Laboratory tests involve r etrieval and t esting of undisturbed s oil s pecimens in t he l aboratory. I t i s a lmost i mpossible t o obt ain a n undisturbed soil sample from the field with typical drilling and sampling techniques and reestablish in situ stress states in the laboratory. This problem can however be controlled, to some extent, by the use of suitable frozen sampling techniques, and consequent testing of these samples in a high quality cyclic simple shear or triaxial shear apparatus. These techniques are very expensive and cannot be attempted for the study of such a large area of NCT Delhi. Moreover, the frozen sampling is not feasible in soil with noteworthy fines content, as the low permeability of these types of soil can lead to ice expansion causing disturbance t o t he s oil structures i nstead of pr eventing t he di sturbance. T o a void t he difficulties associated with sampling and laboratory testing, field tests have become the state-of-practice for routine liquefaction investigations.

The S tandard Penetration Test (SPT), the C one P enetration Test (CPT), shear wave velocity measurements (Vs) and the Becker Penetration Test (BPT) are extensively being used to understand liquefaction behavior of soils. The CRR of the in-situ soil is primarily based on em pirical cor relation to these t ests (Youd et al . 2001). T hese empirical correlations have been developed f rom c ase hi story da ta-bases of 1 iquefied a nd non-liquefied s oils doc umented i n p revious e arthquakes. F igure 10.5 presents the SPT liquefaction t riggering curves f or m agnitude 7. 5 e arthquakes de tailed i n Y oud e t a l. (2001). In this figure, arrows indicate how the chart would be used to determine the CRR of the soil from a corrected blow count (N₁)₆₀ of a pproximately 20. S ands with hi gher fines contents have been shown to be more resistant to liquefaction triggering than clean sands (Seed et al. 1985), accordingly the CRR curves for fines contents greater than 5% shift up a nd to the left as fines content increases, with the maximum permissible shift occurring for a fines content of 35%. The CRR values for (N₁)₆₀ = 20 are approximately 0.22, 0.30, and 0.41 for fines contents of 5%, 15%, and 35%, respectively.

Figure 10.5 SPT CRR c urves for e arthquake of magnitude 7.5 (modified from Seed et al., 1985, obtained from Youd et al., 2001).

The CRR curve for fines contents <5% is the basic penetration criterion for the simplified procedure and is referred as the "SPT clean sand base curve."The CRR curves in Figure 10.5 are valid only for magnitude 7.5 earthquakes. The clean sand curve plotted in Figure 10.5 has been approximated by the following equation:

$$CRR_{7.5} = \left\{ \left(\frac{1}{34 - (N_1)_{60cs}}\right) + \left(\frac{(N_1)_{60cs}}{135}\right) + \left(\frac{50}{(10(N_1)_{60cs} + 45)^2}\right) - \left(\frac{1}{200}\right) \right\} (10.11)$$

This equation is valid for $(N_1)_{60} < 30$. For $(N_1)_{60} < 30$, clean granular soils are too dense to liquefy and are classed as non-liquefiable.

Seed et al. (1985) not ed a n apparent increase of C RR with increase f ines cont ent. Arevised correction for fines content was then developed for correction of $(N_1)_{60}$ to an equivalent clean sand value, $(N_1)_{60cs}$ to consider influence of fines content (FC) on C RR and to better fit the empirical database, which are given as Equation 10.12 & 10.13.

$$(N_1)_{60cs} = a + b (N_1)_{60}$$
 (10.12)

Where'a' and'b'are the coefficients determined from the following relationships:

$$a = 0 \text{ for FC } 5\% \qquad (10.13a)$$

$$2 a = \exp[1.76 \ 2 \ (190/FC)] \text{ for } 5\% < FC < 35\% \qquad (10.13b)$$

$$a = 5.0 \text{ for FC} \ge .35\% \quad (10.13c)$$

$$b = 1.0 \text{ for FC} <= 5\% \qquad (10.14a)$$

$$1.5 b = [0.99 \ 1 \ (FC \ /1,000)] \text{ for } 5\% < FC < 35\% \qquad (10.14b)$$

$$b = 1.2 \text{ for FC} \ge 35\% \quad (10.14c)$$

Youd et al. (2001) and Cetin et al. (2004) proposed the most recent equivalent clean sand relations which convert the $(N_1)_{60}$ of silty sand to an equivalent value for clean s ands, $(N_1)_{60cs}$. These recommendations obtain CRR by using $(N_1)_{60cs}$ and clean sand boundary curve (Idriss and Boulanger, 2004) for evaluating the CRR required to cause liquefaction for cohesionless soil s with a ny f ines c ontent, w hich can b e e xpressed us ing t he followingequations. First, the SPT penetration resistance isadjusted to an equivalent clean sand value as:

$$(N_1)_{60cs} = (N_1)_{60} + \Delta (N_1)_{60}$$
(10.15)
$$\Delta (N_1)_{60} = \exp\left(1.63 + \frac{9.7}{FC} - \left(\frac{15.7}{FC}\right)^2\right) (10.16)$$

The value of *CRR* for a magnitude M = 7.5 earthquake and an effective vertical stress $\sigma_v = 1$ atm (~ 1 tsf) can be calculated based on (N₁)_{60cs} using the following expression:

$$CRR = \exp\left\{\frac{\left(N_{1}\right)_{60cs}}{14.1} + \left(\frac{\left(N_{1}\right)_{60cs}}{126}\right)^{2} - \left(\frac{\left(N_{1}\right)_{60cs}}{23.6}\right)^{3} + \left(\frac{\left(N_{1}\right)_{60cs}}{25.4}\right)^{4} - 2.8\right\}_{(10.17)}$$

These Equations (10.15, 10.16, and 10.17) have been used in spreadsheet for evaluation of CRR at all s ites and at different de pths having soil s usceptible to liquefaction. A typical i llustration of s pread s heet f or t he c omputation of C RR, along with ot her parameters required for computation of FS is depicted in Table 10.5.

		Factor o	f Safety
Consequence of	$(N_1)_{60}$ Clean Sand	Non Critical	Critical
Liquefaction		Structure	Structure
Settlement	≤ 15	1.1	1.3
	≤ 3 0	1.0	1.2
Surface	≤ 15	1.2	1.4
Manifestation	≤ 3 0	1.0	1.2
Lateral Spread	≤ 15	1.3	1.5
	≤ 30	1.0	1.2

Table 10.5 Factors of S afety for L iquefaction Hazard Assessment (Martin a nd L ew, 1999).

10.2.3 Evaluation of Factor of Safety

As de tailed a bove F actor of s afety c an be de termined us ing a bove m entioned t wo variables i.e. CSR and CRR from the following formula for different bore log and depth and applying Magnitude scaling factor for the earthquake of expected magnitude in the region of study.

$$FS = \left(\frac{CRR_{7.5}}{CSR}\right) * MSF$$
(10.18)

If the Cyclic S tress R atio (CSR) caused by the earthquake is greater than the C yclic Resistance R atio (CRR) of in situ soil then FS will be less than 'one' and liquefaction could occur during an earthquake. A factor of safety greater than one indicates that the liquefaction resistance exceeds the earthquake loading, and therefore that liquefaction would not be expected. The higher factor of safety therefore, means that soil is having more resistance to liquefaction.

In the guidelines of some of the countries the recommended criteria for Factor of Safety depend upon the type of the structure. For example as per "Recommended Procedures for Implementation of D MG S pecial P ublication 117 – Guidelines f or Analyzing a nd Mitigating L iquefaction i n C alifornia," S outhern C alifornia E arthquake C enter, University of Southern California, (Martin G.R., and Lew M., 1999), a factor of safety in the range of about 1.1 is generally acceptable for single family dwellings, while a higher value i n t he r ange of 1.3 i s a ppropriate f or more c ritical s tructures. F urthermore, consequences of di fferent l iquefaction ha zards vary. F or example, h azards s temming from flow failure a re of ten more di sastrous than hazards from di fferential s ettlement. Table 10.5 provides general gui delines for selecting a factor of safety.Factor of S aftey (FS) can also be understood in terms of severity index as given in Table 10.6. The result of the analysis may be presented in map format, with zones di stinguished according to the value of the safety coefficient/range.

Group	Factor of Safety	Severity Index
	range	
1	<1	Very Critical
2	1 to 2	Critical
3	2 to 3	Low critical
4	>3	Non liquefiable

Table 10.6: Factor of Safety and severity index of liquefaction

10.3 RESULTS AND DISCUSSION

Under the present project of Seismic Hazard Microzonation of NCT Delhi on 1: 10,000 scale geotechnical investigation at 314 s ites spread over NCT Delhi, have been carried out by drilling borehole up to the depth of 30 meter, collecting soil samples at 1.5m depth interval and S PT N value at 3.0 meters, depth interval. Laboratory investigations have been c arried out on collected s oil s amples a nd I ndex pr operty, s uch as gr ain size distribution (particularly the fine c ontent), plasticity, unit weight, and moisture c ontent etc have been evaluated. On observed S PT N value da ta, ins trumental correction, correction for overburden and fines c ontent have be en applied as de tailed in pr evious chapter and corrected data denoted as $(N_1)_{60cs}$ has be en obtained. A typical example of collected SPT N values at di fferent de pth interval a t one bor ehole l ocation a nd subsequent a pplied c orrection i s gi ven i n Table 6.6. B esides t his ne wly ge nerated geotechnical data to fill up the gap area, particularly in Central Delhi, data collectedfrom different agencies and CHT data where ' N' values are also available have been used.

Thus total 314 newly generated geotechnical data, 108 Geotechnical data collected from different organizations and 11 CHT sites where 'N' values are also available have been used for liquefaction study. Thus a total data at 433 s ites have been used for present liquefaction study.

In the present study of liquefaction, probabilistically derived Peak Ground Acceleration (PGA) at s urface for 10 % probability of exceedance in 50 y ears (i.e. 475-year r eturn period) is used. In the present study, water table map published by Central Ground Water Board (CGWB) for post-monsoon period of November 2010 has been considered, which gives the maximum possible water table in NCT Delhi during the year. These data has been interpreted f ollowing the s tate of s tress approach f or liquefaction s usceptibility using s implified pr ocedures and different pa rameters r equired to evaluate F C s uch as CSR, r_d , MSF, CRR et c as detailed above (Sections 10.1, 10.2, a nd 10.3) have be en evaluatedusing a spread sheet. A typical illustration of spread sheet for the computation of CRR, CSR, MSF and other parameters required for computation of FS is depicted in Table 10.6.

The earthquake of M oment M agnitude 7.57, M aximum C redible E arthquake e valuated from P robabilistic S eismic H azard Analysis for the a rea, on the basis of P SHA s tudy described i n pr evious c hapters has be en considered. H owever, t his e arthquake i s designated to Himalayan region falling under the study area, which is the NCT Delhi, but there are examples, where even long distance earthquakes have triggered liquefaction. A detail of a f ew s uch earthquakes ava ilable i n literature i s gi ven in Table-10.7. Liquefaction potential for Moment magnitude 7.57, based on FS have been evaluated and subsequently m aps at de pth 0-3, 3-6, 6-9, and for c onsolidated de pth 0-9m have been generated and presented as Map 36,37,38 and 39. These maps show that liquefaction is generally possible in areas close to Yamuna River. A few bar charts showing number of liquefiable sites at different depth are given in Figures 10.6. Liquefaction potential maps for t he a rea c overed u nder i ndividual t oposheets on 1: 10000 s cale ha ve a lso be en generated.

Figures 10.6Number of sites (%) liquefiable and non-liquefiable in different depth

Liquefaction is most commonly observed in shallow, loose, saturated cohesion less soils subjected to strong ground motions. Unsaturated soils are not subjected to liquefaction because volume compression does not generate excess por e water pressure. Therefore, water level play very important role in liquefaction study. The main source of recharge of water level in Delhi is rainfall during the monsoon season and water level is maximum (shallow) during this season. In the present study, therefore, water table map published by Central G round W ater Board (CGWB) for post-monsoon period November, 2010 has been considered, which gives the maximum possible water table in NCT Delhi during the year. As discussed in Chapter-4, how ever, in the entire Y amuna flood plain, the water levels are almost same about 2to 5 m in both pre-monsoon (May) and post-Monsoon (November), but a significant reduction in water level observed in some parts of NCT Delhi during pre-monsoon season and may not be favorable for liquefaction. Thus there is possibility that s ome of the a reas s howing liquefaction potential a ctually may not be observed, if an earthquake occurres in a season other than monsoon.

Earthquake	Magnitud	Epicentral	Focal	Source
	e	distance	depth	
		(km)	(km)	
1983 Nihonkai-	7.7	160	15	http://www.ce.berkeley.edu/hausler/si
Chubu, Japan				tes/NKC001.pdf
1988 Udaipu Gahri,	6.6	100	10	http://asc-india.org/gq/udaipur.htm
India				
1989 Loma Prieta,	7.1	93	18	Bardet and Kapuskar (1993)
California				
1994 Northridge,	6.7	50	19	www.lafire.com/famous_ fi res/94011
California				7_NorthridgeEarthquake/quake/02_E
				QE_geology.htm
1995 Manzanillo,	7.3	150	30	http://sun1.pue.upaep.mx/servs/carrs/
Mexixo				GIIS/manzanillo.html
1995 Kobe, Japan	6.9	40	10	http://www.jrias.or.jp/public/Hanshin
				_Earthquake/q1-2e.html
1999 Izmit, Turkey	7.8	61	17	Rothaus et al. (2004)
1999 Duzce,	7.5	56	10	http://geoinfo.usc.edu/turkey/
Turkey				
1999 Chi-Chi,	7.6	80	8	Yu et al. (2000)
Taiwan				
2001 Gujarat, India	7.7	260	17	Rajendran et al. (2001)
5				
2001 Nisqually,	6.8	75	52	Pierepiekarz et al(2001)
Washington				
2002 Denali,	7.9	300	4.2	Kayen et al. (2002)
Alaska	-		-	
2003 Colima,	7.7	60	30	http://geoinfo.usc.edu/gees/
Mexico			20	

Table10.7Maximum Epicentral distance from documented Liquefaction Sites and FocalDepth for Some Large Earthquakes Since 1983 (After Wang, et al., 2006)

CHAPTER-11

INTEGRATION OF SEISMIC HAZARD MICROZONATION MAPS ON GIS PLATFORM

Seismic m icrozonation is subdividing a geographic dom ain into smaller a reas having different pot ential for hazardous e arthquake e ffects. The e arthquake e ffects de pend on 'Geoscientific' attributes such as geology and geomorphology, soil coverage/thickness, and rock out crop/depth, and 'Geotechnical' at tributes such as dynamic property of soil profile, and water table etc. Other at tributes are the earthquake parameters, which are estimated by ha zard analysis. The Peak Ground Acceleration (PGA), amplification/site response, predominant frequency and liquefaction due to earthquakes are some of the important seismological attributes. In Seismic Hazard Microzonation based on di fferent attributes, seismic hazard maps of different themes are generated. In order to understand the combined effect of different themes, maps of different themes are to be integrated by giving suitable weightage to the attributes and rank to different themes. Theme weights can be assigned based on the region and their contribution to the seismic hazard for example flat terrain has minimum weight and deep soil terrain and special features such as basin etc have highest weight for site response or liquefaction. Rank can be assigned within each theme based on their values closer to hazards. Usually higher rank isassigned to values, which is more hazardous in nature, for example larger PGA will have the higher r ank. The integrated hazard m ap gives the Hazard Index (HI), which is the integrated factor depending on the weights and ranks of the geoscientific, geotechnical attributes; ground motion parameters and liquefaction susceptibility etc. ha zard Index maps may be prepared for both the Design Based Earthquake DBE (10% probability of exceedence in 50 Y ears) and Maximum Credible Earthquake MCE (2% probability of exceedence in 50 Y ears). Though PGA at S urface and Amplification factor maps for DBE and MCE are different; the hazard index maps generated for DBE and MCE are similar

Geographical Information System (GIS) provide suitable platform and is used to develop a ha zard index map wherein the s eismic ha zard parameters are integrated /weighted overlaid and coupled with ground informationusing Analytic Hierarchy Process (AHP).

11.1GIS INTEGRATION LOGIC

The r epresentation and i nterpretation of unc ertainty r elated t o t he c lassification of individual locations provided by the fuzzy logic based on location attribute values. Fuzzy logic implements classes or groupings of data with boundaries. The central idea of fuzzy sets is aided by the Analytic Hierarchy Process (AHP). AHP is a multi-criteria decision

method that uses hierarchical structures to represent a problem and then develop priorities for the alternatives based on the judgment of the user (Saaty, 1980). The idea of multicriteria de cision-making was based on the concept of McHarg (1968). McHarg (1968) introduced a systematic l and us e pl anning by using t he c oncept of compatibility of multiple land uses. He mentioned that the factors affecting land and its relative values are different and, therefore, it is difficult to think of optimizing them for a single use. It can be opt imized for mul tiple c ompatible us es. He int roduced simple ma trix system f or determining the degree of compatibility. Saaty (1968) has shown that weighting activities in multi-criteria de cision-making can be effectively dealt with hierarchical structuring and pa ir-wise comparisons. P air-wise c omparisons a re ba sed on f orming j udgments between two particular elements r ather than attempting to prioritize an entire list of elements (Saaty, 1980). F or m ulti-criteria eva luation, Saaty's A nalytical H ierarchy Process (AHP) is us ed to de termine t he w eights of e ach i ndividual c riterion (Saaty, 1990). AHP is a mathematical method to determine priority of criteria in the decision making process. It is a popular tool us ed by decision makers in the multi-attribute decisions. Saaty's A nalytical H ierarchy process cons tructs a m atrix of pa ir-wise comparisons (ratios) between the factors of Earthquake Hazard Parameters (EHP). The constructed matrix shows the relative importance of the EHP based on their weights. If 9 earthquake ha zard parameters are scaled as 1 to 9, 1 meaning that the two factors are equally important, and 9 indicating that one factor is more important than the other, the reciprocals of 1 to 9 (i.e., 1/1 to 1/9) show that one is less important than the others. The allocation of weights for the identical EHP depends on the relative importance of factors and participatory group of decision makers. Then the individual normalized weights of each EHP are derived from the matrix developed by pair-wise comparisons between the factors of EHP. This operation is performed by calculating the principal Eigen vector of the matrix. The results are in the range of 0 to 1 and their sum adds up to '1' in each column. The weights for each attribute can be calculated by averaging the values in each row of the matrix. These weights will also sum to '1' and can be used in deriving the weighted sums of rating or s cores for each region of c ells or polygon of the mapped layers (Jones, 1997). Since EHP vary significantly and depends on s everal factors, they need to be classified into various ranges or types, which are known as the features of a layer. Hence each EHP features are rated or s cored within EHP and then this rate is normalized to ensure that no l aver exerts an influence beyond its d etermined w eight. Therefore, a raw rating for each feature of EHP is allocated initially on a standard scale such as 1 to 10 and then normalized using the relation,

$$X_i = \frac{R_i - R_{min}}{R_{max} - R_{min}} \tag{11.1}$$

Where R_i is the rating assigned for features with single EHP, R_{min} and R_{max} is minimum and maximum rate of particular EHP.

11.2 INTEGRATION OF SEISMIC HAZARD MAPS OF NCT DELHI

In the present study of Seismic Hazard Microzonation of NCT Delhi on 1: 10000 scale maps of followings themes have be en considered for G IS integration to generate the hazard index map of NCT Delhi on 1:10000 scale

- i. Peak Ground Acceleration at Surface
- ii. Amplification factor
- iii. Liquefaction Potential
- iv. Engineering Bedrock Depth
- v. Site classification based on Shear-wave Velocity Vs30
- vi. Predominant Frequency
- vii. Geology and Geomorphology

The pair-wise comparison has been performed using Analytic Hierarchy Process (AHP) [EVM mul tiple input s] template of Goepel (Vr.08.02.2013; <u>http://bpmsg.com</u>) w here each parameter is compared in pairs to others. Table 11.1 shows the input given for pair wise comparison; wherein one parameter is selected over other in the scale 1-9 to achieve the goal; i.e. to calculate the hazard. S cale de finition is given in Table 11.2. Inputs, as presented in Table 11.1 were provided for generation of pair-wise comparison matrix of the themes and nor malized w eights in %. Table 11.3 shows the pair-wise c omparison matrix of the themes and the calculated normalized weights.

Further, within individual theme a grouping has be en made according to their values. Then rank has be en assigned based on the values. Using the Equation (1), these ranks have be en normalized to 0-1. The assigned ranks with normalized values are given in Table 11.4. I ntegration of di fferent themes has be en carried out us ing normalized weighted overlay of G IS and hazard index maps are generated for D BE and M CE. Hazard Index of < 0.3 is attributed to low hazard; 0.3-0.6 is attributed to moderate hazard and of 0.6 -0.88 is a ttribute to high hazard. Figure 11.1 shows the scheme for the integration of di fferent themes for generating hazard map of D elhi based on G IS integration logic de tailed a bove. Based on this hi erarchical integration in G IS base, seismic Hazard microzonation map of NCT Delhi on 1:10000 scales has be en evolved, categorizing NCT in three hazard zones (Low, Moderate, and High) and presented as Map 40.

		Criteria			
Α	В	Which is more Important?	Scale (1-9)		
		(A or B)			
PGA	LQ	А	1		
	AF	А	7		
	EBR	А	9		
	Vs(30)	А	9		
	FMPF	А	9		
	GG	А	9		
LQ	AF	А	7		
	EBR	А	9		
	Vs(30)	А	9		
	FMPF	А	9		
	GG	А	9		
AF	EBR	А	5		
	Vs(30)	А	5		
	FMPF	А	7		
	GG	А	7		
EBR	Vs(30)	А	3		
	FMPF	А	5		
	GG	А	7		
Vs(30)	FMPF	А	5		
	GG	А	7		
PF	GG	А	7		

 Table: 11.1Pair-wise comparison input for AHP Template

 Table: 11.2 Scale for pair wise comparison

Intensity	Definition	Explanation
1	Equal Importance	Two element contribute equally to the objective
3	Moderate	Experience and judgment slightly favor one element
	importance	over other
5	Strong Importance	Experience and judgment strongly favor one element
		over other
7	Very Strong	One element is favored very strongly over another, its
	Importance	dominance is demonstrated in practice
9	Extreme	Evidence favoring one element over other is of the
	Importance	highest possible order of affirmation

	PGA_SUR	LQ	AF	EBR	Vs30	FMPF	GG	Normalized Weights (%)
PGA_SUR	1	1	7	9	9	9	9	35.4
LQ	1	1	7	9	9	9	9	35.4
AF	1/7	1/7	1	5	5	7	7	13.0
EBR	1/9	1/9	1/5	1	3	5	7	06.7
Vs(30)	1/9	1/9	1/5	1/3	1	5	7	05.0
FMPF	1/9	1/9	1/7	1/5	1/5	1	7	03.0
GG	1/9	1/9	1/7	1/7	1/7	1/7	1	01.5

Table 11.3Pair-wise comparison matrix of Themes and their normalized weights

Table 11.4Normalized ranks of the themes for NCT Delhi Microzonation

Themes	Values	Weight	Rank	Normalized Rank
Peak Ground	<0.2	0.354	1	0
Acceleration (PGA)	0.2-0.3		2	0.33
at Surface	0.3-0.4		3	0.66
	0.4-0.48		4	1
Factor of Safety for	<1	0.354	3	1
Liquefaction	1-1.2		2	0.5
	>1.2		1	0
Amplification	<2	0.130	1	0
Factor	2-3		2	0.33
	3-4		3	0.66
	4-4.7		4	1
Depth of	<40	0.067	1	0
Engineering	40-60		2	0.25
Bedrock	60-80		3	0.50
	80-100		4	0.75
	100-154		5	1
Vs(30)	154-360	0.050	3	1
	360-760		2	0.5
	760-850		1	0
First mode peak	0.9-1.5	0.030	3	1
frequency	1.5-2.5		2	0.5
	2.5-15.1		1	0
Geology and	Out crop/Ridge	0.015	1	0
Geomorphology	Older Alluvium		2	0.25
	Chhatarpur basin		3	0.50
	Newer Alluvium		4	0.75
	Flood plain, River , Water body		5	1

Figure 11.1 Weighted overlay/integration of thematic maps for generation of Hazard Index map

11.3 Results

Integrated seismic hazard map of Delhi has been generated using seven thematic layers viz., Peak Ground Acceleration at Surface, Amplification factor, Liquefaction Potential, Engineering B edrock Depth, S ite c lassification based on S hear-wave V elocity Vs30, Predominant Frequency, Geology, and Geomorphology. The integration is performed following a pair-wise comparison of Analytical Hierarchy Process (AHP), wherein each thematic map is assigned weight in the 9-1 scale: depending on its contribution towards the seismic hazard. Following the AHP, the weightage assigned to each theme are: Peak Ground Acceleration at S urface (0.354), A mplification f actor(0.130), L iquefaction Potential(0.354), Engineering Bedrock Depth (0.067), Site classification based on Shearwave V elocity Vs30 (0.50), Predominant F requency (0.030), G eology and Geomorphology (0.015). The thematic ve ctor layers are overlaid and integrated using GIS. The Hazard Index thus obtained varies from 0.2 to 0.88, which have been divided in three groups (i) HazardIndex < 0.3 (ii) Hazard Index 0.3-0.6, (iii) Hazard Index 0.6 -0.88. On the basis of Hazard Index NCT Delhi has been classified into three broad zones of vulnerability to the seismic hazard i.e. Hazard Index < 0.3 is a ttributed to low hazard; 0.3-0.6 is attributed to moderate hazard and of 0.6-0.88 high hazard. The "high" seismic hazard zone is observed where either PGA at surface is high or possibility of liquefaction is observed. Most of the ar eas along Yamuna River and flood plan, s cattered p arts of northern Delhi having thick alluvial sediment, and a very small part of SW Delhi fall in high hazard zone. The 'low ' seismic hazard zone occurs mostly in central part of Delhi, either side of the Delhi ridge and s cattered part of SW. The 'Moderate' seismic hazard zone oc cupies the area between low and high hazard zone s cattered mostly leaving the central part of Delhi. Intergrated Hazard of NCT Delhi is attached as Map 40.

CHAPTER-12

QUANTIFICATION OF UNCERTAINTIES AND VALIDATIONOF DIFFERENT PARAMETERS, MODELS, AND RESULTS

The Seismic Hazard Microzonation is a procedure for estimating the total seismic hazard at many sites from ground shaking and related phenomena, by taking into a ccount the effect of both i.e. source effects with the influence of propagation path that gives the input wave to the interface (Seismic/engineering be drock) and of local site conditions. Thus the Seismic Hazard Microzonation is attempted in two parts

- (i) Assessment of seismic hazard at engineering bedrock and
- (ii) Assessment of Seismic Hazard at surface considering site effect.

Assessment of seismic hazard is an analytical methodology that estimates the likelihood that various levels of e arthquake caused g round motions will be exceeded at a given location in a given future time period. Despite extensive advances in seismic knowledge, there are still major gaps in our understanding of the mechanisms that cause earthquakes, and of the processes that govern how an earthquake's energy propagates from its origin beneath t he e arth t o v arious points ne ar and f ar on t he s urface. These g aps i n understanding mean that, there are inevitably significant uncertainties in the numerical results.

In Seismic Hazard Analysis (SHA) for the assessment of ground motion at engineering bedrock, these un certainties ar e a rising in magnitude s cales (measurement an d conversion error), e arthquake catalog incompleteness (Temporal, S patial and minimum threshold m agnitude), e arthquake s ource m odeling, m ethods of e stimations, ki nds of earthquake r ecurrence models and e stimation of s trong ground motion us ing different attenuation relationships. This ground motion is used as input motion for evaluation of ground motion at surface and when subjected to a site, gets further amplified along with uncertainties as sociated with this input ground motion due to the site effect. Therefore, uncertainties in di fferent gr ound motion parameters at e ngineering be drock a nd subsequent gr ound motion parameters at surface arises due t o site effect need t o be assessed and quantified in a rational manner to provide a more complete picture of the seismic ha zard w ith a quantified r ange o f pos sibilities i n t erms of gr ound motions parameters at the site of interest.

The present study of Seismic Hazard Microzonation of NCT Delhi on 1:10000 scale is based on Probabilistic Seismic Hazard Analysis (PSHA) for assessment of ground motion at e ngineering b edrock, in which uncertainties at various s teps of s eismic ha zard assessment have been i dentified, quantified and combined using appropriate statistical techniques as de tailed in Chapter-5. The final product in t erms of Uniform H azard Response Spectra (UHRS), for various return periods have been estimated and probable uncertainties presented in terms of StandardDeviation. Thusat each sites, UHRS have been evaluated for the mean and mean \pm sigma.

Site specific UHRS are used for the simulation of site specific synthetic strong ground motion time histories, which are used asinput ground motion forassessment of modified ground motion at surface. Uncertainties arise due to possible error in UHRS need to be ascertained. Synthetic time histories c an be developed using different t echniques and model parameters and therefore uncertainties arising out of this also need to be assessed and validated.

Further, f or t he a ssessment of gr ound m otion a t s urface which is i nfluenced by t he physical pr operties of t he s oil l ayers due t o site effect, s everal field and l aboratory investigations for ascertaining soil parameters are to be carried out. Based on t hese soil properties di fferent input pa rameters, models are t o be developed a nd us ed f or s ite response study. Therefore possible uncertainties in investigations and model parameters used are to be assessed and validated.

In this Chapter therefore ranges of uncertainties in different input parameters, models, intermediate and final products of S eismic Hazard M icrozonation and va lidation of different model and results have been discussed for better judgment. However, there is no strong motion earthquake which can be compared with the response s pectra ge nerated from the study, but an effort has been made to see any similarity with available near and far field week motion records.

12.1 UNCERTAINTY IN PEAK GROUND ACCELERATION AT SURFACE

Peak Ground A cceleration is the maximum amplitude of the ground acceleration timehistory. To evaluate PGA at surface, time histories have been generated at engineering bedrock and subsequently used as input motion for ground response analysis, which also provides t ime histories a t s urface. T ime histories a t e ngineering b edrock have be en generated using Uniform H azard R esponse S pectra (UHRS) for various r eturn periods obtained from PSHA and different model parameters such as total duration, de lay and rise time etc. Thus there is possibility of uncertainty in generation of time histories due to (i) uncertainty involved in UHRS and (ii) selection of different model parameters. Both these aspects of uncertainties have been examined in following sections.

12.1.1 Uncertainty in evaluation of Uniform Hazard Response Spectra

Uniform H azard R esponse S pectra (UHRS) f or various r eturn p eriods ha ve be en estimated at different sites of Delhi at engineering bedrockbased on PSHA. These UHRS

have be en us ed f or further s tudy of generation of Earthquake S trong G round M otion, time hi stories and s ubsequently us ed, as i nput motion f or gr ound r esponse a nalysis t o evaluate s eismic hazard parameters at ground surface. The UHRS have been evaluated for the m ean and m ean \pm sigma.Such UHRS at a few sites for (i) 10% probability of exceedence for 475 y ear r eturn period and (ii) 2% probability of exceedence for 2500 return period are given in Figures 5.30, 5.31, a nd 5.31 of Chapter-5. The figure 5.31 is reproduced as Figure 12.1.

Figure 12.1Uniform H azard Response Spectra for s ite Bhawana af ter free s urface Correction for (Left) 47 5year return period and (Right) 2500 y earreturn period

Based on Mean values of UHRS of respective sites, spectrum compatible ground motion time histories have been generated at 449 sites spread over Delhi at engineering bed rock as de tailed in Chapter 5. Theseground motion time histories have be en used as i nput motion for ground response study and ground motion time histories at surface have been obtained at all 449 sites. Based on these time histories atsurface at all the 449 sites, the peak ground a cceleration (PGA), which is the maximum a mplitude of the ground acceleration time-history, have been evaluated and subsequently a surface PGA map has been generated as detailed in Chapter-9. The PGA at surface for MCE based on mean values of UHRS varies from 0.18g to 0.42g and for DBE varies from 0.09g to 0.27g.

In or der t o a ssess pos sible unc ertainty i n t he results, a t a f ew s ites t hree s pectrum compatible ground motion time histories have been generated based on three UHRS at each site i.e. based on M ean, M ean + s igma and M ean -sigma for MCE. C onsidering these time histories ground response s tudy has be en r epeated for a ll the three i nput ground motion t ime hi stories a nd s ubsequently t hree t ime hi stories at s urface and corresponding three PGA values at each site have been evaluated. The process has also been repeated for DBE. The uncertainty in PGA values on an average found to be (i) $\pm 0.06g$ for MCE (2% probability of exceedence in 50 years) and (ii) $\pm 0.03g$ for DBE (10% probability of exceedence in 50 years).

12.1.2 Uncertainty in selection of d ifferent m odel p arameters f or ge neration of synthetic time history

Synthetic time histories of engineering significancehave be en generated at 449 sites spread over NCT Delhi for the return periods of 475 years and 2500 years, using different model parameters. These time histories have been used for further ground response study and evaluation of PGA at surface. In order to assess the uncertainty if any in generation of time histories itself and exercise has been carried out as detailed below.

The important parameters to generate time histories are total time duration, risetime, and decay time, which have be en taken as 40.96 second, 10 s econds and 20 s econds respectively, on the basis of experience of earthquake records available in this domain and discussion with scientist associated in the field. In order to see the sensitivity of these parameters on generation of time histories and subsequent evaluation of PGA, time histories have been generated using slight variation expected to occur on these parameters and these time histories have been used as input motion at that site for site response s tudy and e valuation of P GA. This exercise has been r epeated at a f ew representative sites. It is observed that the uncertainty in results in terms of S tandard Deviation in PGA at surface derived from these time histories is of the order of 0.012g for MCEand around half .007g f or DBE. Whereas, the PGA at surface for MCE varies from 0.18g t o 0.42g and for D BE varies from 0.09g to 0.27g as discussed in previous section 12.1. Thus from engineering point of view, there is insignificant variation in final result of P GA at s urface due to possible error in c hoosing different parameters for generation of strong motion time histories. Results of a few sites based on MCE are given in T ables 12.1. T ime s eries ge nerated us ing five a lternative pa rameters a re s hown in Figure 12.2. R esponse S pectra ge nerated ba sed on t hese f ive t ime hi stories a s i nput motion are shown in Figure 12.3. Figure 12.3 indicate that all the five response spectra are matching well.

Table 12.1 Variations in P eak Ground Acceleration (PGA) for MCE, at different sitesbased on di fferent t ime hi stories (TS1, TS2, TS3, TS4 & TS5) ge neratedusing different parameters

S	PGA	PGA	PGA	PGA	PGA	Differe	Differen	Differe	Differe	Differe	Avera	Stand
	with	with	with	with	with	nce	ce with	nce	nce	nce	ge	ard
Ν	TS1	TS2	TS3	TS4	TS5	with	average	with	with	with	PGA	deviat
						average	PGA	average	average	average		ion
						PGA	and	PGA	PGA	PGA		(SD)
						and	TS2	and	and	and		
						TS1		TS3	TS4	TS5		
1	3.0589	3.1710	2.9223	3.2296	2.8458	0.3121	0.3236	0.2982	0.3296	0.2905	0.311	0.015
2	2.7515	3.0327	2.8957	3.0795	2.7627	0.2808	0.3095	0.2955	0.3142	0.2819	0.296	0.014
3	2.9276	2.9887	2.8674	2.8192	2.8146	0.2987	0.3050	0.2926	0.2877	0.2872	0.294	0.007
4	2.2746	2.2354	2.3506	2.4490	2.0979	0.2321	0.2281	0.2399	0.2499	0.2141	0.233	0.012

Figure 12.2Five time series generated based on five alternate parameters

Figure 12.3 Five r esponse s pectra based on five time s eries generated using different alternate parameters.

12.2 UNCERTAINTY IN GEOTECHNICAL INVESTIGATIONS PRACTICES

Sources of un certainty in ge otechnical/geophysical investigations include the inherent variability of soils (a result of ge ological environment in which they were deposited), inherent anisotropy (a function of the soil structure or fabric), induced anisotropy (caused by a nisotropic s tress c onditions), dr illing and s ampling di sturbances, l imitations of field/or laboratory testing equipment, testing errors, and interpretation errors. Some of these s ources of uncertainty c an be minimized by c areful a ttention t o t est de tails, but other cannot due to limitations of geotechnical/geophysical practices.

Geotechnical and geophysical da ta ha ve be en generated f or t he s tudy t hrough outsourcing. T here are pos sibility of c ertain e rror t o b e i ntroduced i n geotechnical/geophysical i nvestigations dur ing drilling ope ration, c ollection of S oil samples particularly undisturbed soil samples, SPT operation for N value measurements, soil transportation and laboratory investigations.

However, t here a re s et pr ocedures a nd also a vailable i n t he f orm o f c ode, but t he implementation of these depend upon experience of the individual technicians involved in the operation, the background of the engineering company.

There is no a ccepted method for the evaluation of the quality of investigation except to the limited extent a scertaining possible correlation with geology of the study site. The only way the quality can be a ssured is due to sensitizing the technicians involved in operation and by strict supervision for implementing procedure through check list. In the present project, all possible efforts have be en made to minimize these errorsby strict supervision and enforcing procedures, through checklist; use of multiple techniques, for example to ascertain correctness of SPT measurement S PT and D CPT have be en conducted at same sites; soil properties have be en ascertained through collection of soil samples from open pits conducted at a few sites; visible inspection, and reports of the open sections available in the area, such as areas of quarries, s and mines, generated during geological mappingand inspection of nearby ongoing construction. Thus even if by adopting all these possible efforts, if any error has occurred is due to limitations of geotechnical/geophysical i nvestigations practices in the country and within acceptable limit.

12.3 UNCERTAINTY I N E MPIRICAL RE LATIONS F OR E VALUATION O F SHEAR WAVE VELOCITY

The for t he m n-situ best t echnique easurement of i lowstrainshearwavevelocity(Vs)withdepth, are CHT and DHT, but it is not feasible to make Vs measurements at all the locations using these techniques, due to the requirement of drilling number of boreholes and also implication of high cost. Empirical relations available in literature for matching soil are generally used for evaluation of shear wave velocity from SPT N values collected during geotechnical investigations, which may possibly introduce some error. To minimize the error, in the present study local empirical relations for different types of soils of Delhi have been derived by evaluating shear wave velocity at common sites using different techniques.

12.4 UNCERTAINTY IN DE LINEATION O F E NGINEERING B EDROCK AN D VALIDATION OF SOIL MODEL

On the basis of P robabilistic S eismic H azard Analysis(PSHA) input m otion has be en derived at engineering bedrock (Shear wave velocity about 760m/s). In order to study the effect of soil through ground response analysis, a soil model above engineering bedrock need to be developed after delineation of engineering rockat all the 449 investigated sites.

In the present study, engineering bedrock has been delineated from extrapolating data of 30m soil through linear regression analysis (with regression coefficient more than 0.9 in most of the sites). The techniques yield satisfactory result, as in Delhi soil deposits below a few meters of ground is due to normal geological ageing and also there is no history of soil alteration due to unusual local natural events.Further, it is also noted that significant variations in r esponse of s oil i s onl y w ithin a f ew m eters be low gr ound l evel a nd therefore, the marginal error if any introduced in delineating engineering bedrock is not of much significant.

However, in order to validate the soil model and qualitatively assess the uncertaintyin delineation of e ngineering be drock, response of s oil in t erms of P GA have be en evaluated at different s ites by introducing e rror of $\pm 10m$ and $\pm 20m$ in e ngineering bedrock at each sites. Thus at a few representative sites ground response analysis hasbeen performed using five soil models and PGA has been evaluated.

Table12.2 Result of qualitative assessment of uncertainty in varying engineering bedrock(EBR) depth by ± 10 m and ± 20 m at each site for MCE.

S	De	PGA	PGA	PGA	PGA	PGA	Average	Difference	Difference	Difference	Difference	Average	Standard
	pth	(EBR)	(EBR-	(EBR+1	EBR-	EBR+20	PGA	(PGA	(PGA	(.PGA		PGA	deviatio
Ν	of		10m)	0m)	20m	m		EBR-	EBR+10m	EBR-	(PGA		n (SD)
	EB							10m))	20m)	EBR+20m		
	R								-)		
1	86	1.6444	1.6971	1.5994	1.7298	1.4997	0.1678	0.1732	0.1991	0.1765	0.1530	0.166	0.009
2	41	1.7349	1.7988	1.7179	1.7907	1.6914	0.1770	0.1836	0.1793	0.1827	0.1685	0.177	0.005
3	114	1.3760	1.4288	1.3186	1.4976	1.2661	0.1404	0.1458	0.1346	0.1528	0.1292	0.141	0.008

The standard deviation on an average on surface PGA comes out to the order of 0.01g for MCE and naturally half 0.007g for DBE. This uncertainty has suitably incorporated in final r esults and a lso taken c are while suggesting c lass interval to be c onsidered. The results of exercise for a few sites are given in Table 12.2 for MCE.

12.5 UNCERTAINTY IN MATERIAL PROPERTIES

Technique of N on- linear a nalyses a dopted in t his s tudy r equires a qua ntitative knowledge of t he a ctual nonl inear m aterial be havior, w hich c an onl y b e obt ained by means of sophisticated laboratory tests. Some generic average curves have been proposed for different types of material, as sand or clay and available in literature, but the actual behavior of a given soil at a given site may strongly depart from these averages and may introduce t he e rror. In t he pr esent s tudy therefore, R esonant Column test on representative samples of Sand and Clay of Delhi at different depth, to determine shear modulus a nd da mping ratio of s oil under di fferent c onfining pr essure etc ha ve been conducted and used in place of generic average curves available in literature to reduced the uncertainty and improve the results.

12.6 UNCERTAINTY IN USE OF HETEROGENEOUS TECHNIQUES

In seismic m icrozonation s tudy, f or e valuation of di fferent c omponents, s everal geophysical/geotechnical techniques are generally used. One of the important parameters in the study is the evaluation of shear wave velocity, which is used for site classification and also in ground response analysis.Each techniquehas their own merits and demerits and may not yield the similar results. However, this is sometimes essential due to logistic reasons to enable field operation, speedy completion and also to reduce the cost of the project. In the present study also several techniques have however adopted, butonly cross validated data have been used.

12.7 UNCERTAINTY IN DEFINING BOUNDARIES OF MICRO ZONES

Subsurface g eology, c haracteristics of 1 itholog, a rrangement of 1 avering a nd a lso characteristics of individual layers, particularly 15 to 20 meter below ground level, play a very important r ole in final r esults of de rived parameters of S eismic H azard Microzonation. In order to assess the variability of these parameters in 1:10000 scale data is required for every 100m. In the present study, on the basis of geological attributes to fulfill the requirement of scale, data has been generated roughly in a grid of 1.5 K m X 1.5Km and ne ed t o b e f urther e xtrapolated f or c ontouring to join similar values or defining c lass bound aries. R oughly extrapolation c an b e done m anually by obs erving geological attributes, with certain uncertainty, which may also be different in different area. The other alternative is to make use of some standardmathematical techniques to generate continuous data by extrapolation considering the attributes of nearest points and draw boundary by j oining similar values or defined boundaries on the basis of class interval. Uncertainty may however, will remain in this method also, but it will be same for the entire area. In the present study therefore second approach has been adopted and a mathematical technique known as Inverse distance weighting (IDW) has been used. In this t echnique all t he n eighborhood points may be used with suitable w eightage to approaching nearest points. For example say in a grid of nine square Km fourdata pints are available and all four will be used for extrapolation giving weightage to nearest point. The extrapolated point will be the weighted sum of the values of known points.

12.8 UNCERTAINTY I N CO NSIDERING P EAK FREQUENCY AND P EAK AMPLIFICATION

In the present study, Peak frequency and corresponding Peak Amplification have been provided f or f irst m ode us ing e xperimental t echniques and also based on Numerical technique. The experimental technique, based on H/V ratio provides peak frequency of Soil c olumn above firm bedrock. In numerical analysis, input motion has been used at engineering bedrock, which is at most of the sites quite above firm bedrock. Thus t he Peak Frequency evaluated by num erical technique, represents frequency of soil c olumn
above engineering be drock, and may differ. Which frequencies are to be used may be discussed a mong the engineers. However, Peak frequency evaluated by experimental techniques which gives the frequency of soil column above firm be drock seems more reasonable to be used.

12.9 VALIDATION OF MAXIMUM MAGNITUDE ASSESSED THROUGH PROBABILISTIC SEISMIC HAZARD ANALYSIS

The m aximum m agnitude which is de fined a s the upper limit of largest pos sible magnitude for a given region is an important variable in the seismic hazard estimation, as it reflects maximum potential of strain released in larger earthquakes. In the present study earthquake s ources within 350 km radius of c entre of D elhi (Latitude 24° -31.5° N and Longitude 74° -81.5° E) have been considered and fourdifferent seismic zones (Part of Himalayan Zone, Delhi-Hardwar R idge Z one, Moradabad Fault Z one, a nd Rajasthan Great B oundary F ault Z one) have be en i dentified. The m aximum r egional m agnitude M_{max} have been evaluated for these four zones based onstandard methods as discussed in Chapter-6. The maximum magnitude among these s eismic zone s, which is 7.2±0.37 for Part of H imalayan Zone, has b een considered for the s tudy. The r eported m aximum magnitude e xperienced in t his z one i s 6.9, w hich oc curred on 29 th March, 1999ne ar Chamoli(30.4°N a nd 79.4°E) and therefore t he evaluated maximum magnitude s eems reasonable.

The maximum magnitude thus evaluated is not the representative of whole H imalayan seismic zone and only representing the part of Himalayan seismic zone falling within the area considered f or i dentification of s ource z ones e ffecting D elhi.For e xample t he epicenter o f Kangra e arthquake of 4 th April 1905 (lat. 32.3^{0} N a nd l ong. 76.2^{0} E) of initially reported magnitude 8.0 and the seismic gap area in Himalaya where researchers have pointed out possibility of occurrence of earthquake of magnitude 8.0 and more are beyond the considered area for the study. Further, it is seen from the following discussion that magnitude8 earthquake oc curring at such a far distance may not yi eld significant PGA at Delhi.

The PGA values vary with distance and significantly decreases after about 100 km. One such example of Median model predictions for the vertical and horizontal PGA (Tiwan) for different m agnitude e arthquakes are s hown in f ollowing Figure 1 2.4. T his f igure indicates that for earthquake of magnitude 8, horizontal PGA even at about 125km from the hypocenter will be only about 0.01g, which will further be reduced and for 300 km distance possibly be around 0.001g. This is insignificant in comparison to the minimum PGA 0.18g e valuated at engineering bedrockand considered for further ground response study for Delhi based on MCE.

Figure 12.4:Median model predictions for the vertical and horizontal PGA (Tiwan), Kun-Sung Liu and Yi-Ben Tsai (2005).

In addition, the amplitude of ground motion decreases with increasing distance from the focus of an earthquake, the frequency content of the shaking also changes with distance. Earthquake-induced s eismic wave frequencies s pan several o rders of m agnitude, from about 0.001 he rtz up t o s everal hund red h ertz. Low-frequency waves c an t ravel l ong distances but us ually do not c ause much da mage, w hereas the higher frequency waves which a re of d amaging i n na ture tend t o di ssipate i n t he gr ound ve ry c lose t o t he earthquake source. Thus for long distance earthquakeonly low-frequency motions of the order of several tens of hertz are dominant, and may affect to the high rise buildingsand bridges only having natural frequencies corresponding to these frequencies.For example low-frequency motion of 0.1 Hz (10 second) corresponds to the natural frequency of 100 story building and may possibly affect to such buildings. The present studyis for general use and site specific response spectra have been generated up to 3 second only, which are applicable for the structures up to 30 stories, generally found in a city. For construction of high rise building more than 30 stories site specific studies are to be carried out.

12.10 COMPARISON OF RE SPONSE S PECTRA WI TH ACT UAL EARTHQUAKE

There is no strong motion earthquake which can be compared with the response spectra generated from the study. Comparison of weak and strong motionis not reasonable due to different frequency c ontent, a mplitude and expected nonlinearity, how ever, to see any similarity a comparison has been made with earthquakes of different origin. It seems that shape of the response spectra are reasonably matching to the possible extent. One such local earthquake of magnitude 3.8 oc curred ne ar Delhi and was recorded by instrument installed at R idge Observatory. At the same l ocation in pr esent s tudy ge otechnical

investigation has also been carried out and response spectrum has been generated. Both the response spectra are plotted in same scale and shown in following Figure 12.5. It is seen t hat s hape of both t he s pectra is reasonably comparable particularly f or high frequency. A few comparisons are also shown in Figure 12.6 with far field earthquakes.

Figure 12.5 Matching normalized observed response spectra (local earthquake) with the generated nor malized response spectra f or 2% probability e xceedance of ground for 50 years located at Ridge Observatory, IMD, New Delhi for 5% damping.

Figure 12.6: Matching of actual response spectra (red colour)at Jakir Husanin (a) and Karol bagh (b) sites, with far field earthquake events (Blue colour).

CHAPTER-13

SUGGESTED IMPLICATIONS OF DIFFERENT PARAMETERS DERIVED FROM SEISMIC HAZARD MICROZONATION STUDY FOR DESIGNING BUILDING CODES AND IN LAND USE PLANNING OF NCT DELHI

The Study of Seismic Hazard Microzonation for such a large scale has been attempted for the first time in our country. As per definition and requirement of scale of the study, Seismic Hazard parameters required for design of building codes and land use planning have been estimated at 449 sites. On the basis of methodology adopted for formulation of present building codes, based on present Seismic Hazard map of the county, an effort has been made after discussion with experts, to suggest certain equivalence and methodology to implement the seismic Hazard Microzonation parameters. A few broad suggestions have also been given for land use planning.

13.1 IMPLICATION O F S EISMIC H AZARD M ICROZONATION PARAMETERS IN DESIGN OF BUILDING CODES

13.1.1 I mplication of Peak G round A cceleration at S urface viz-a-viz R eview of Seismic Zone for NCT Delhi

In t he pr esent bui lding code (IS1893 (Part1):2002), f or t he pur pose of determining seismic forces, the country is classified into four s eismic z ones. Each zone has be en assigned Z one F actor (Z), which is further us ed f or t he d esign of hor izontal s eismic coefficient ' $A_{h'}$ for a structure.

The Z one Factor (Z) has been defined in the IS code as a factor to obtain the design spectrum depending on the perceived maximum seismic risk characterized by maximum Considered Earthquake (MCE) in the zone, in which the structure is located. The basic zone factors included in the present standard are said to be the reasonable estimate of Effective P eak Ground Acceleration (EPGA), which has further b een defined as "0.4 times the 5% damped a verage s pectral a cceleration be tween period 0.1 t o 0.3 s and considered as Z ero Period Acceleration (ZPA). However, the Zero Period Acceleration (ZPA) has been defined as 'the value of acceleration response spectrum for period below 0.03 s (Frequency above 33HZ) (reference IS Code para 3.11, 3.33, 3.34).

Ultimately the Z oning Factor has been equated as G round acceleration at zero period, which in t he p resent s tudy is P eak G round A cceleration (PGA), which in terms of structural response, corresponds to the peak value of the absolute acceleration of a single degree of freedom (SDOF), system with infinite stiffness, that is, with a natural period of

vibration equal to zero and may directly be considered as Zoning Factor. Based on this suggested Zoning Factor and their equivalence may be obtained as follows:

In the present study PGA values have been provided at 449 sites. Base on 2% probability of e xceedance i n 50 ye ars i.e. MCE, PGA values ar e b etween 0.18g t o 0.42g. T he uncertainty in the results has been worked out to be the order of \pm 0.06g. Keeping this uncertainty i n mind, the obtained PGA values have been grouped in four classes (i) >0.18g (ii) 0.18g - 0.30g, with the central value 0.24g (iii) <0.30g -0.42g with the central value 0.36g (iv) < 0.42g and accordingly area of NCT Delhi may tentatively be classified in four classes. Class (A) PGA values less than 0.18; Class (B) PGA value from 0.18g to 0.30 g, Class (C) PGA value 0.30g to 0.42g, Class (D) PGA value greater that 0.42g, however there are a very few sites of this class.

In the present building code, based on S eismic Z oning M ap of the country the Z one Factor (ZPA) is used for design of buildings in different zones, are as follows(Table-13.1).

Seismic Zone	Zone Factor (ZPA)	
Zone II	0.10	
Zone III	0.16	
Zone IV	0.24	
	0.36	

 Table 1 3.1 Zone F actor (ZPA) us ed for de sign of bui lding i n di fferent z ones a s p er present BIS codes

Considering zoning factor (ZPA) used in the present Seismic Zoning Map of the country for di fferent Z ones, t he a real ying in c lass "A" of N CT D elhi m ay be considered equivalent to Z one III; Areal ying under c lass "B" m ay be considered e quivalent to Z one IV and area of NCT Delhi lying under class "D" may be considered V. Two sites occupying a very small area have PGA more than PGA assigned to zone V(Table 13.2). PGA M ap-23 for 2% probability of e xceedance in 50 ye ars for 5% da mping m ay be referred for identification of sites in different zones.

Class	Class interval (PGA)	Suggested	Suggested Zone Factor	
		Zone of NCT		
		Delhi		
Class A	less than 0.18g	Zone III	0.16	
Class B	0.18g to 0.30g	Zone IV	0.24	
Class C	0.30g to 0.42g	Zone V	0.36	
Class D	0.42g to 0.476	More t han	0.44	
		Zone V	(based on PGA at two sites,	
			occupying a ve ry s mall	
			area)	

Table13.2 Proposed Z ones a ndt heir e quivalence w ith pr esent z oning m ap a nd
corresponding Zone Factor:

13.1.2 Implication of response spectra and derived parameters viz-a-viz evaluation of horizontal Seismic coefficient 'A_h'

As per t he pr esent building c ode, t he de sign hor izontal S eismic C oefficient A_h for structure is being determined by the following expression, using parameters of response spectra (Sa/g) along with other parameters, as described below:

 $A_{\rm h} = Z \, \mathrm{I} \, \mathrm{S}_{\rm a} / \, 2 \, \mathrm{R} \, \mathrm{g} \tag{13.1}$

(Provided that for any structure with T <= 0.1s, the value of A_h will not be taken less than Z/2 whatever be the value of I/R)

Where;

Z= is the zone factor, which has been described in above para.

I=Importance factor, depending upon the functional use of the structure, characterized by hazardous consequences of its failure, post-earthquake functional needs, historical value or economic importance based on engineering judgment/assessment of the structure. In present building code 1.5 is used for critical structure and 1 for other structures.

R= Response reduction factor, depending on perceived seismic damage performance of the structure, characterized by duc tile or brittle deformations. However, the ratio (I/R) shall not be greater than 1.0. The values of R for building are given in table 7 of the code. This f actor va ries f rom 1.5 t o 5.0 f or di fferent t ype of building s ystem and pur ely engineering parameter based on e ngineering j udgment/Assessment.S_a/g= Average response acceleration coefficient for rock or soil sites based on appropriate natural period and damping of the structure.

In pr esent building c ode t his parameter is evaluated on t he basis of three nor malized design r esponse s pectra pr esented f or R ock, m edium s oil and soft s oil s ites f or 5% damping. Multiplication factors have also been given in code for various other damping. Thus in the present code only two response spectra have been used for all soil types.

On the basis of NEHRP classification, which is based on average shear wave velocity of soil up to 30 meter depth $(Vs)^{30}$, Delhi soil type in most part of the Delhi excluding Ridge area is same and is class 'D' type except at a few sites. Thus for soil of Delhi of in present code is r epresented by r esponse s pectra of s oft s oil a nd t herefore only one response spectra may be applicable for whole Delhi.

The response of the soil is not only dependent upon the average shear wave velocity, but also depends upon t he s hear wave velocity of individual layers of litholog and t heir arrangement of layering. In highly ge ologically variable dom ain of Delhi, lithological variations are predominant in a very short distance. Keeping in view in mind and as per requirement of scale of Seismic Hazard Microzonation study of Delhi, response spectra presently have been generated for 449 sites, spread over different domains of NCT Delhi for

- (i) 10% P robability of E xceedance in 50 years for return period of 475 y ears (DBE), for 5% damping, and
- (ii) 2% P robability of e xceedance i n 50 ye ars f or r eturn pe riod of 2475 ye ars (MCE) for 5% damping.

For normal structure, Response Spectra of nearest sites based on DBE may be used for evaluation of de sign hor izontal S eismic C oefficient ' A_h '. For C ritical s tructure nearest Response S pectra ba sed on M CE m ay be us ed di rectly f or c alculation of de sign horizontal Seismic Coefficient.

These r esponse s pectra can be us ed t o evaluate s ite s pecific horizontal S eismic Coefficient ' A_h ' as follows

(1) For using the above formula to evaluate design horizontal Seismic Coefficient A_h the R esponse s pectra at each site ar et o be no rmalized with PGA values of respective s ites. Normalized spectra will also be provided. The or dinate value corresponding to the period of interest will then provide acceleration coefficient (Sa/g) corresponding to that period (Building period). As per present code for soil type of Delhi only two values of spectral coefficient at each period are used. For example for the period of .2 s econd the values used are 2.5 for medium soil and 1.67 for soft soil. From the present study site specific values can be evaluated.

(2) The equation for de sign hor izontal S eismic C oefficient may be written $asA_h = A_h^{-1} (I/2R)$ where $A_h^{-1} = (Z.Sa/g)$ said to be equivalent seismic coefficient of Response spectra directly provide value of (A_h^{-1}) at each site for different period by s imply r eading the ordinate value of r esponse spectra to the corresponding period.

Thus using direct method (2) response spectra can directly be used for evaluating Seismic Coefficient (A_h), by evaluating (A_h^{-1}) at each site and may be used for design of building code particularly for critical structures. Further, the above calculation is based on M CE and beingdivided by 2. In the present study PGA based DBE have also be en evaluated which c an be us ed di rectly in t he following f ormula. Map-24 of t he r eport m ay b e referred f or P GA at s urface f or 10% pr obability of e xceedance in 50 ye ar and 5% damping.

 $A_{h} = A_{h}^{-1}(I/R)$ 13.2

 A_h^{-1} can directly be read from PGA map based on DBE.

To make use for normal structures, on the basis of response spectra generated at 449 sites, value of A_h^{1} for different periods have been evaluated at each site and spectral acceleration maps of different periods (0.1s, 0.3s, 0.5s, and 1.0s) have been generated assigning class values to take average value of class. For example at 0.3 second period spectral values which correspond to three story buildings varies from 0.2g to 1.4g (which will be considerably reduced when de sign basis spectra to be constructed) and therefore equivalent value of A_h^{1} will vary from 0.2 to 1.4 (MCE). In case DBE based Spectral Acceleration varies from 0.1 to 0.8g and corresponding equivalent Ah1will be 0.1 to 0.8 (need not be divide by 2 as being done presently).

13.1.3 Implication of Soil Amplification:

In view of the use of Peak Ground acceleration (PGA) at surface for defining different parameters of building c ode, s uch as Z one F actor etc, A mplification f actor has explicitly been included and therefore not required to be considered separately. However, these values can be used to assign Importance Factor, Reduction Factor for different type of structures, used for deriving Seismic Coefficient (A_h). Map-25 of the report may be referred for Amplification factor.

13.1.4 Implication of Peak frequency and Peak amplification

If the building frequency matches with Peak frequency of the soil of the site, resonance may occur and subsequently ground motion may increase many fold depending upon the peak amplification factor. Peak frequency evaluated at each sites and map subsequently generated may be used to avoid selection of such sites. However, in the present S eismic Z oning m ap a spect of P eak F requency has not be en included and a ssumed (Para 6.2 of IS c ode) t hat "earthquake c ause impulsive ground motions, which are complex and irregular in character, changing in period and amplitude each lasting for a small duration. Therefore, r esonance of the type as visualized under steady–state sinusoidal excitation will not occur, as it would need time to build up s uch amplitude." It is also mentioned in the note that there are exceptions to this. Site specific values and subsequent maps have been produced under the present study and therefore, engineers to decide to make use of these parameters appropriately.

Further, in the present study, Peak frequency and corresponding Peak amplification have been provided for first mode using both experimental and Numerical techniques. The experimental technique based on H /V r atio pr ovides peak f requency o f S oil c olumn above seismic bedrock (Shear wave velocity more than 1500m/s). In numerical analysis, input motion has been used at engineering bedrock(Shear wave velocity 760m/s), which is at most of the sites quite above seismic bedrock. Thus the Peak Frequency evaluated using num erical t echnique, r epresents f requency of s oil column a bove e ngineering bedrock and us ed f or validation of r esultsfrom e xperimental t echnique. H owever, experimental te chnique under e stimate the P eak amplification factor b ut, numerical technique e ven for a bove e ngineering be drock gi ves r easonable e stimate of pe ak amplification and may be considered for qualitative a ssessment. Based on Numerical analysis, Peak Frequency and Peak Amplification can be provided for second and third mode to perform dynamic analysis of number of modes, as per requirement para 6.6.3.of IS code. Peak f requency map -20 attached with the r eport g enerated based on experimental technique and Peak amplification Map-21 generated based on Numerical technique may be referred.

13.1.5 Implication of PGA values at different depth below ground level

At all the 449 sites variation of PGA with depth have also been evaluated up to the depth of engineering bedrock and presented in the form of graph showing vertical distribution of PGA. Vertical distribution of PGA at one site is given below (Figure 13.1). On the basis of PGA values evaluated at 3m and 6m meter below ground levels two maps has been generated. The values at different depth can be used for evaluation of s eismic coefficient (A_h) at different depth to be used for construction of underground structures in place of recommendation of IS codes at para 6.4.4. These values may also be used for deciding actual PGA values to be used at the level of foundation. PGA Maps-34 & Map-35 may be referred for ascertaining PGA and 3m and 6m depths below ground level at different sites.

Figure 13.1 Vertical distribution of PGA at one site

13.1.6 Implication of Liquefaction maps

In the present building code 'N' values have been specified for possible liquefaction, with recommendation to avoid such sites for new settlement and important project OR appropriate methods of compaction or stabilization need to be a dopted after study of liquefiable area. The present S eismic M icrozonation S tudy provides liquefaction maps identifying possible liquefiable areas in NCT Delhi. At each liquefiable site, possibility of liquefaction at di fferent de pth be low gr ound l evel h as also be en provided. T his information may used as per recommendation of IS code.

Liquefaction susceptibility Maps 36,37,38,39 a nd 40 m ay be r eferred f or i dentifying liquefiable sites for different depths.

13.2 Implication of Seismic Hazard Microzonation parameters in land use planning

(i) Areas having high hazard zone such as liquefiable zone, high amplification factor may be avoided for public utility structures. Integrated Map-40 attached with the report may be referred for identification of sites lying in Low, Moderate and High hazard zones.

- (ii) L iquefiable ar eas may be identified based on Liquefaction susceptibility M aps 36,37,38,39 and 40 and accordingly marked for providing special treatment suitable to resist liquefaction for construction of buildings in these areas. However, high rise buildings need to be avoided.
- (iii) Areas matching with Peak frequency of soil and frequency of type of building to be constructed need to be avoided. In case of matching frequencies, resonance may occur, which may amplify the ground motion by 7 to 20 times at different sites.
- Peak frequency Map-20 a ttached w ith t he r eport ge nerated ba sed on experimental technique m ay be r eferred for as certaining Peak frequency of s ite and Peak amplification Map-21 generated based on Numerical technique may be referred for assessment of Peak amplification.
- (iii) Planning of different types of structures in NCT Delhi.

Response s pectra at 449 s ites have be en provided from 0 to 3s and may be us ed for construction of buildings up t o 30 s tories. F or easy a pplicability, based on spectral ordinate values of response spectra at different periods, Spectral acceleration maps (Map 26 to Map 29 ba sed on MCE and Map 30 to Map 33 ba sed on D BE) have also been provided for 0.1s, 0.3s, 0.5s and 1.0s, which may directly be used for the construction 1,3,5and 10 stories buildings respectively.

Forexample Spectral acceleration Map of 0.1 second (Map-26 or Map-30), may be used for ascertaining Spectral acceleration (Sa) for the construction of 1 story buildings at different sites in NCT Delhi. Spectral acceleration at different sites at 0.1s varies from 0.18g to 0.7g. Therefore the priority should be to construct 1 stories building in areas where Sa is less. However, to select the sites for the construction of 1 story building Peak frequency Map-19 and Peak amplification factor Map-21 are also to be referred and areas having matching frequencies need to be avoided. For example in JNU campus spectral acceleration at 0.1s is lowest (0.18g), but as per the Peak frequency Map-19, the Peak frequencies of the different sites in the JNU campus are around 5.0 Hz to 7 Hz, which corresponds to one to two stories buildings and thus resonance may occur. Thus in such areas construction of one story buildings need to be avoided.

CHAPTER -14

SEISMIC HAZARD PARAMETERS OF IMPORTANT STRUCTURES OF NCT DELHI

Based on seismic H azard Microzonation of N CT D elhi and site s pecific ha zard parameters provided at 449 sites and also map, site specific values of seismic hazard can be evaluated for any important structures of NCT Delhi. Presently for a few important structures, s uch a s hos pital, hi storical s tructure "Q utubminar" representative s eismic hazard pa rameters a nd r esponse s pectra ha ve be en gi ven i n following s ections (Table 14.1 to 14.3 a nd Fig.14.1 to 14.6). These pa rameters may be used to evaluate present seismic r esponse of t he bui lding a nd in cas e f ails t o meet t he r equirement, t hese parameters can be used for retrofitting.

Sanjay Gandhi Memorial Hospital			
Lattitude	28	.693 ⁰ N	
Longitude	77	7.080 ⁰ E	
Nearest BoreHole	0.6 Km from SGMH		
Latitude		3.696 ⁰ N	
Longitude	77.0779 ⁰ E		
Sheet	32		
BHN	1n		
Ground Response Results	MCE(2%)	DBE(10%)	
PGA at Surface	0.315 g	0.161g	
PGA at Engineering bedrock	0.088g	0.045g	
Amplification Factor	2.9	2.6	
First Mode Peak Frequency (Hz)	1.8Hz	1.8Hz	
Engineering bedrock depth (Shear wave vel. ,760m/s)	62meters		
Peak Amplification (at first mode)	12.6	16.6	
Spectral Acceleration at 0.1 S	0.589g	0.327g	
Spectral Acceleration (S _a) at 0.3	0.743g	0.398g	
Spectral Acceleration (S _a) at 0.5	0.680g	0.331g	
Spectral Acceleration (S _a) at 1.0	0.201g	0.105g	

Table 14.1 Resultsof site at Sheet No. 32; Borehole no. 1n; near Sultanpuri, about 600m from Sanjay Gandhi Memorial Hospital (SGMH)

Figure 14.1Response Spectra for Sheet No. 32; Borehole no. 1n; near Sultanpuri, based on 2% probability of Exceedance in 50 year (MCE) with 5% damping.

Figure14.2 Response Spectra for Sheet No. 32; Borehole no. 1n; near Sultanpuri, based on 10% probability of Exceedance in 50 year (DBE) with 5% damping

Table 14.2Results of site at Sheet No. 33; Borehole no. 3n; near Tihar village, which isabout 990m from Deen Dayal Upadhyaya Hospital.

Deen Dayal Upadhyaya	Hospital		
Latitude	28.6280432 ⁰ N		
Longitude	77.1123082 ⁰ E		
Results of Nearest			
BoreHole	0.990 Km from DI	DU	
Latitude	2	8.630556 ⁰ N	
Longitude		7.106944 ⁰ E	
Sheet		33	
BHN		3n	
Ground Response			
Results	MCE(2%)	DBE(10%)	
PGA at Surface	0.237 g	0.132g	
PGA at Engineering			
bedrock	0.087g	0.041g	
Amplification Factor	2.5	2.5	
First Mode Peak			
Frequency	1.3Hz	1.7Hz	
Engineering bedrock			
depth (Shear wave vel.	116 meters		
,760m/s)			
Peak Amplification (at			
first mode)	16.5	17.2	
Spectral Acceleration at			
0.1 S	0.699g	0.317g	
Spectral Acceleration			
(S _a) at 0.3	0.579g	0.3361g	
Spectral Acceleration			
(S _a) at 0.5	0.549g	0.252g	
Spectral Acceleration			
(S _a) at 1.0	0.234g	0.099g	

Figure 14.3 Response Spectra for Sheet No. 33; Borehole no. 3n; near Tihar Village, based on 2% probability of Exceedance in 50 year (DBE) with 5% damping

Figure14.4 Response Spectra for Sheet No. 33; Borehole no. 3n; near Tihar Village, based on 10% probability of Exceedance in 50 year (DBE) with 5% damping

Table 14.3 Results of site at Sheet No. 66; Borehole no. 24; near Mansarowar Park, about600m from GTB Hospital Dilshad Garden.

GTB Hospital Dilshad Garden			
Latitude	28.686 [°] N		
Longitude	77.309 ⁰ E		
	0.6 Km from GTB Dilshad		
Nearest BoreHole	Garden		
Latitude	28.677 ⁰ N		
Longitude	77.298 ⁰ E		
Sheet	66		
BHN	24		
Ground Response Results	MCE	DBE	
PGA at Surface	0.268 g	0.152g	
PGA at Engineering bedrock	0.074g	0.047g	
Amplification Factor	2.5	3.2	
First Mode Peak Frequency (Hz)	1.8Hz	3.1Hz	
Engineering bedrock depth (Shear wave vel.,760m/s)	75 meters		
Peak Amplification (at first mode)	16.1	16.1	
Spectral Acceleration at 0.1 S	0.676g	0.347g	
Spectral Acceleration (S _a) at 0.3	0.669g	0.332g	
Spectral Acceleration (S _a) at 0.5	0.504g	0.242g	
Spectral Acceleration (S _a) at 1.0	0.174g	0.087g	

Figure14.5Response Spectra forSheet No. 66; Borehole no. 24; nearMansarovar Park, based on 2% probability of Exceedance in 50 year (MCE) with 5damping.

Figure14.6 Response Spectra forSheet No. 66; Borehole no. 24; nearMansarovar Park, based on 10% probability of Exceedance in 50 year (DBE) with 5% damping

CHAPTER – 15

SUMMARY AND CONCLUSIONS

National Capital Territory (NCT) of Delhi occupies an area of 1482 sq km spreading between Lat $28^{0}24' 01'' \& 28^{0}53' 00''$ N and Long $76^{0}50' 24'' \& 77^{0}20' 37''$ E lies in Seismic Zone IV of the Seismic Zoning Map of India . The geoscientific constitution of the area provides a highly variable domain with a complex scenario having scope of rapid changes in seismic accentuations which need closer evaluation for Seismic Hazard. In the present study therefore an attempt has be en made to investigate the seismic hazard and generate Seismic Hazard Microzonation Maps of NCT Delhi on 1:10000 scale.

To initiate the Seismic Hazard Microzonation, study of NCT Delhi, project specific toposheets have been generated by Survey of India (SoI), presenting NCT Delhi in 75 sheets. Each sheet covering an area of about 20 to 25sq km. Available Geological Map on 1: 25,000 s cale has been upgraded on 1:10000 s cale in c ollaboration with Geological Survey of India, using high resolution old aerial photographs, quick bird satellite i magery and limited field check. Seismic Hazard Microzonation has been carried out in six parts. In the first part, estimation of Seismic hazard at engineering bedrock (Shear w ave ve locity 760m /s) us ing s eismotectonic a nd e arthquake information within a radius of 350 km from NCT Delhi in collaboration with IIT Roorkee. The second part dealt with study of soil characteristics based on generated geotechnical and geophysical data at 552 sites. In the third part site characterization based on s hear wave ve locity e valuated f rom ge otechnical a nd geophysical techniqueshas be en c arried out. I n t he f ourth part P redominant f requency (Peak frequency) a nd P eak a mplification c orresponding t o t he pe ak f requency of s oil columns a bove S eismic bedrock has been assessed us ing e xperimental t echnique based on H/V ratio of microtremors. In the fifth part strong ground motion parameters at surface have been evaluated at 449 s ites spread over NCT Delhi by c arrying out one-dimension (1-D) ground response analysis, using DYNEQ software. In the sixth part, liquefaction susceptibility has been evaluated using Seed and Idriss simplified approach (Idriss a nd B oulanger 2005). F urther, a ll t hese pa rameters ha ve be en integrated in GIS and integrated Hazard Map of NCT Delhi has been developed.

The s tudy i s ba sed on ne wly da ta ge nerated, (i) ge otechnical da ta by dr illing borehole (Shallow/Deep) a t 314 s ites, (ii) da ta ge nerated us ing C HT/DHT a t 25 sites,(19 are common sites) (iii) da ta ge nerated using MASW at 83 sites and old Geotechnical D ata c ollected f rom di fferent or ganizations f or 120 s ites. B esides routine laboratory investigations of soil samples collected during the drilling, Cyclic Tri-axial test and Resonant C olumn test have also be en c onducted on selected soil samples of different types of soils at different depths. The following sections list the brief descriptions of each component of the study and major conclusions drawn from all the six parts of the study.

15.1 PROBABILISTIC SEISMIC HAZARD ANALYSIS

1. Earthquake data (Catalogue)

The earthquake catalogue has be en c ompiled from historic t o pr esent t ime (1702-2004) for the area considered for the study (Latitude $24^{0} - 31.5^{0}$ N and Longitude $74^{0} - 81.5^{0}$ E) with Delhi as its centre, which contains a total of 1411 earthquakes. There are 1, 26, 21, 28, 88, 180, 344 and 751 earthquakes in the magnitude range as M > 7, 6 < M < 7, 5 < M < 6, 4 < M < 5, 3 < M < 4, 2 < M < 3, and 1 < M < 2, respectively.

2. Seismotectonic Modelling

The s eismotectonic m odelling has be en c arried out us ing Seismotectonic P rovince Method and the c onsidered a rea (Latitude $24.0^{\circ} - 31.5^{\circ}$ N and L ongitude $74.0^{\circ} - 81.5^{\circ}$ E) has been divided into four zones namely, part of Himalayan Zone (falling within 350 km from centre of Delhi), Delhi-Haridwar Ridge Zone, Moradabad Fault Zone and R ajasthan Great B oundary F ault z one. B ased on t hese z ones and f ault system, line and the areal source models have been developed. Seismotectonic atlas published by Geological Survey of India (GSI, 2000) has been used for identification of faults in the region (Map-5 & 6).

3. Homogenization of Earthquake Catalogue

Homogenization of E arthquake C atalogue h as be en carried out us ing di fferent relationships developed between Mb- M_{s_s} M_L- M_b and M_L- M_s from available data of different magnitude scales (Joshi and Sharma, 2006).

4. Declustering of the Catalogue

To s eparate t he de pendent f rom t he i ndependent s eismicity, t he e arthquake cataloguehas been declustered. The decluster algorithm used is based on Reasenberg (1985). The declustering found 18 clusters of earthquakes, a total of 25 events (out of 1411).

5. Completeness Analysis of Seismic Data

A method proposed by Stepp (1972) has been applied to determine the interval class over which that class is homogeneous.

6. Estimation of a, b and Mc

Estimation of the a, b and M_c values for the catalogues (for complete part only) for all the four sources, nine methods have been used. The methods are (i) Maximum Curvature method (M1), (ii) Fixed $M_c = M_{min}$ (M2), (iii) goodness of fit M_c90 (M3) (iv) goodne ss of f it M_c95 (M4), (v) be st c ombinations of M_c90 and M_c95 a nd maximum curvature (M5), (vi) Entire Magnitude Range (EMR) (M6), (vii) Shi and Bolt (1982) method (M7), (viii) Bootstrap method (M8) and (ix) Cao and Gao (2002) method (M9). In this study the free code of s eismicity analysis s oftware pa ckage

ZMAP (Wiemer, 2001), which i s written i n Mathworks' c ommercial s oftware language Matlab, has been used (Joshi and Sharma, 2008).

7. Estimation of M_{max}

The pr obabilistic a pproach f or e stimating t he m aximum r egional m agnitude M $_{max}$ was s uggested by K ijko and S ellevoll (1989) b ased on t he doubly truncated G -R relationship. It has been further refined by K ijko and Graham (1998) to consider the uncertainties in the input magnitude data. M_{max} from Kijko-Sellevoll-Bayes estimator is obtained (Kijko and Graham, 1998 and 2001) using eight different methods.

Parameter	HIM	DHR	MOR	RGBF
a	2.64±0.16	0.93±0.08	0.62 ± 0.08	0.89±0.08
b	0.59±0.03	0.42±0.012	0.42±0.012	0.42±0.012
M _c	4.0	3.0	3.0	3.0
M _{max}	7.2±0.37	6.42±0.47	6.42±0.47	6.42±0.47
λ	1.93±0.21	0.48±0.08	0.23±0.038	0.44±0.071
β	1.35±0.37	0.96±0.03	0.96±0.03	0.96±0.03

8. The parameters used for the study are given in following table

9. Ground Motion Prediction equations

Since no s trong m otion da ta a re a vailable f rom t he r egion unde r s tudy, s pectral attenuation relationship based on world wide data has been used. The important points considered for s election of t he GMPE's were –tectonic e nviroment, f ocal de pths, parameters available in present case vis-à-vis used in the relationship, spectral peroids for which the strong ground motion is available, etc. The GMPEs used in the present work are developed by Abrahamson and Silva (1997), Sadigh et al. (1997) and Boore and Atkinson (2008) to estimate the strong ground motion.

10. Seismic Hazard Analysis of NCT Delhi

The w ell e stablished P robabilistic S eismic H azard Analysis (PSHA) which was developed by Cornell (1968) and Algermissen et al., (1982) has been carried out for Delhi unde r c ollaborative pr oject w ith I IT R oorkee (Prof. M .L.Sharma, P roject Investigator). In the pr esent s tudy the C RISIS (version r eleased in 2007) c omputer code for s eismic hazard assessment (Ordaz et al., 2003) has been applied. For formal and, quantitative t reatment of unc ertainties logic t ree approach c onsisting of three nodes: s ource, m ethod of estimating seismic hazard parameters and ground–motion attenuation model, has been adopted.

11. Estimation of Strong Ground Motion for Delhi

The m ean Peak Ground Acceleration (PGA) v alues (spectral a cceleration at 0.01second) have been estimated for both the return periods 475 and 2500 years. For

475 years return periods are used as the design basis earthquakes. Considering the Poisson occurrence of earthquakes whose 10 % probability of excedance of ground motion in 50 years. Similarly the 2 % probability of exceedance of ground motion in 50 years is equivalent to the 2500 years return period of an earthquake is MCE (Maximum Considered Earthquake).

12. Spectral Acceleration

The spectral acceleration (S_a) in terms of PGA has also been estimated for the periods of 0.1 sec, 0.3 sec and 1.0 seconds. In single degree of freedom the spectral periods of 0.1 sec, 0.3 sec and 1.0 seconds corresponds to approximately single, three and ten story bui ldings r espectively. T hese a re t he t ypes of bui ldings ge nerally f ound i n Delhi.

13. Uniform Hazard Response Spectrum (UHRS)

For es timating UHRS, s eismic ha zard curves, S_a are c omputed f or a r ange of frequency values. From t hese ha zard curves, response s pectra f or a s pecified probability of exceedance over the entire frequency range of interest are obtained at various places in D elhi. The r esponse s pectra f or various return periods have a lso been estimated.

14. Free surface correction

The P GA c alculated a t t he B edrock us ing G round M otion P rediction E quations (GMPE) is actually ascertained at outcrop. Therefore, to make them use as incident wave to the bedrock PGA, free surface correction need to be applied. Therefore to incorporate free s urface cor rection amplitude of s pectral ac celeration values at different sites and subsequently response spectra evaluated, have been divided by a factor of 2 for accounting free surface correction.

15. Acceleration Time History:

In the present study spectral compatible time history at 449 s ites spread over NCT Delhi based on target response spectra generated from PSHA, have been simulated at engineering bedrock for (i) 2% probability of exceedance in 50 year corresponding to return period of 2500 year (MCE) and (ii) 10% probability of exceedance in 50 year corresponding to return period of 475 years (DBE). The time duration parameters has been taken as: Total time duration: 40.96 second, Rise time: 10second, Decay Time: 20 second.

16. Peak G round A cceleration (PGA) at en gineering bedrock af ter f ree s urface correction , derived from simulated acceleration time histories

On the basis of time histories generated at all the 449 s ites at engineering bedrock; PGA values have been evaluated at each site. These site specific PGA values at 449 sites have be en c onverted i n c ontinuous s urface us ing Inverse D istance Wei ghted (IDW) interpolation technique, using appropriate parameters and cross validation, so that t he R oot M ean Square (RMS) values b etween predicted and actual are as minimum as possible. Using this continuous data PGA maps (Map 11& Map 12) at engineering b edrock have be enge nerated for N CT D elhi f or t wo periods of exceedance i.e.

- (i) 2% probability of ex ceedence of ground motion in 50 ye ars for the return period of 2500 ye ar, based on maximum credible earthquake (MCE), for 5% damping.
- (ii) 10% probability of exceedence of ground motion in 50 years for the return period of 475 years based on D esign B asis E arthquake (DBE), f or 5% damping.

For MCE, the PGA values at engineering bedrock vary from 0. 067g to 0.114g and for 10% pr obability of exceedence i n 50 ye ars i .e f or D BE t he P GA values at engineering bedrock vary from .035g to .058g.

15.2 SOIL CHARACTERISTICS IN DELHI

1. Distribution of soil types

On the basis of geotechnical data generated/collected at 434 sites spread over different geological domains of NCT Delhi, depth wise distribution of different types of soil at each bore hole site have been studied individually and collectively for all bore holes in a toposheet. Several cross sections and 3-D profiles have been drawn. Major part of soil in Delhi consists of sandy soil embedded with silt and clay, which even extends at some borehole locations to the depth of more than hundred meters.

2. Local empirical relations between corrected SPT'N'Values $(N_I)_{60}$ and measured in-situ shear wave velocity using CHT& DHT

On the basis of CHT/DHT data and SPT N values data collected at 19 common sites, corrected N value $(N_1)_{60}$ have been evaluated, after applying appropriate corrections. Empirical relations for different types of soils of Delhi between $(N_1)_{60}$, and measured in situ shear wave velocity have been developed and compared with internationally developed r elations. T hese r elations have be en us ed f or evaluation of s hear wave velocity form SPT 'N' values for other sites.

15.3 SITE CHARACTERIZATION

1. Average Shear wave velocity of 30m soil column [*Vs*(30)]evaluatedat different sites of NCT Delhi, spread over the varied geological domains of NCT Delhi, using CHT, DHT, S PT ' N' va lue and M ASW t echniques, a t 542 s ites These S hear w ave velocities have be en us ed for c lassification of s ites based on National E arthquake

Hazard R eduction Program (NEHRP), Building Seismic S afety C ouncil (2001) and Uniform Building Code (UBC, ICBO 1994). According to this classification, the sites of NCT D elhi, can be classified under the three categories i.e. Class 'B' (firm and hard r ock) ha ving S hear w ave velocity between 760 m/s and 1500m/s (JNU site), Class 'C' (Dense soil and soft rock) having shear wave velocity 360m/s and 760 m/s (such as Asola site) and , class D (Soft soil) having Shear wave velocity between 180m/sec and 360m/s at all other sites.

2. Site classification map

In order to prepare maps, discrete site specific shear wave velocity (Vs^{30}) values at 542 sites have been converted in continuous surface using Inverse Distance Weighted (IDW) interpolation technique, using appropriate parameters and cross validation so that the R oot M ean Square (RMS) values be tween pr edicted and actual ar e as minimum as possible. This map represents the Site classification based on Shear wave velocity obtained for different techniques at different sites spread over NCT D elhi (Map-16). Shear wave velocity of top few meters layer play a very important role in modifying response of soil, during earthquake loading. In view of this two maps for shear wave velocities of layers 0-3 m and 3-6 m below ground level have also been generated (Map 17 & 18).

15.4: SITE RESPONSE STUDY (EVALUATION OF PEAK FREQUENCY AND PEAK AMPLIFICATION OF SOIL)

Amplification factor is equal to the ratio of the free surface motion amplitude to the bedrock motion a mplitude, determines how each frequency in the bedrock (input) motion is a mplified, or de amplified, by the soil column a bove bedrock. The frequencies that correspond to the local maxima (first mode) are natural frequencies of the soil deposit and termed as P eak frequency. The corresponding a mplitude of the local maxima is the P eak Amplification factor/ratio. Peak frequencies and Peak amplification factor have been evaluated using experimental and numerical techniques.

Experimental t echnique ba sed on H /V r atio of m icrotremor da ta (Nakamura t ype study) has be en us ed f or e valuation of P eak f requency of t he s oil a bove s eismic bedrock and generation of Peak frequency map.However, there is no unanimity among scientists (Bard, 2000, F ield & Jacob, 1995, L ermo and Garcia, 1994) as r egards t o reliability of amplification assessments ba sed on microtremor ba sed Nakamura techniques.Quasi T ransfer S pectra (QTS) obt ained from Nakamura t ype s tudy are stable enough to characterize a site and the study of soil variability in conjunction with geological m ap a nd u sed for constraining n umber of s ites f or ge neration of geotechnical/geophysical da ta. T hese s tudies h ave be en conducted, b y de ploying Digital Triaxial Portable 1 Hz velocity sensor at 511sites in NCT and adjoining terrain

of NCR. Peak frequency and corresponding Peak amplification factor have also been evaluated using numerical technique.

Peak Frequency (f₀)

Map 20illustrates the corresponding Peak frequency contour map of soil above firm bedrock. It is evident from the Peak f requency mapthat the peak frequencies at different sites in NCT Delhi mostly vary from 0.21 H to 10Hz. At a very few sites Peak frequencies are between 0.1 to 0.2Hz. On the basis of Peak frequencies area of Delhi can be divided as (i) Low peak frequency <1.0 Hzcharacterizes the domain of thick (>200m) quaternary sediment fill area. It can further be divided in two groups (a) area with peak frequencies vary from 0.3 to 0.5 Hz, which roughly corresponds to the frequencies of 20 to 30 stories buildings (b) area with peak frequencies vary from 0.5 to 1.0 H z, which r oughly c orresponds t o t he f requencies of 10 t o 20 s tories buildings.(ii) M oderate peak f requency dom ain of 1.0 t o 2.0 H z, w hich r oughly corresponds to the frequencies of 5 to 10 stories buildings (iii) high peak frequency domain of 2 to 3.5 Hz surrounding the area of Ridge, which roughly corresponds to the frequencies of 3 to 5 stories buildings (iv) Very high peak frequency domain >3.5Hz characterizes rocky ambiance with moderator thin (<30m) sediment cover and high impedance contrast a t base a nd t he R ocky do main i n r idge a rea, w hich r oughly corresponds to 1 to 2 s tories buildings. To identify exact localities to be used in the field, large scale maps have been provided. The maps are also made available in GIS format. T he p eak frequency di stribution of s ites ha ving di fferent r anges of P eak frequency shows that out of 511 sites

- (i) Peak frequency at 78 sites (15%) are in the range of 2.1 to more than 8 Hz which roughly corresponds to the matching frequency of 1 to 5 stories buildings, which are common types of building in Delhi.
- (ii) Peak frequencies at 55 s ites (10.7%) are in the range of 1.1 t o 2.0 H z, which roughly corresponds to the matching frequency of 5 to 10 stories buildings.
- (iii) Peak frequencies at 288 sites (54%) are in the range of 0.5Hz to 1.0Hz, which roughly corresponds to the matching frequency of 10 to 20 stories buildings.
- (iv) Peak frequencies at 46 s ites (9.8%) are in the range of 0.3Hz to 0.49Hz, which roughly corresponds to the matching frequency of 20 to 30 stories buildings.
- (v) Peak f requencies a t 4 4 s ites (8.2%) are l ess t han 0.3H z, which r oughly corresponds to the matching frequency of high rise building more than 30 stories.

Peak Amplification

Peak amplification factor is us ed to e stimate th e qualitative assessment of s eismic hazard at di fferent s ites. Experimental t echniques unde r es timate t he P eak amplification factor and therefore need to be evaluated from numerical technique. In the present study Peak amplification factors have been evaluated at 449 s ites for the soil above engineering bedrock and reasonably used for the qualitative assessment of seismic hazard in different sites in Delhi. Peak amplification factor for the soil column above engineering bedrock obtained using numerical technique varies from 7 t o 19. On the basis of this data set a Peak amplification factor map has been generated and attached as Map 21.

15.5 SITE RESPONSE STUDY, EVALUATION OF SITE SPECIFIC GROUND MOTION PARAMETERS AND RESPONSE SPECTRA AT SURFACE

 In the present study analytical method based on multiple reflection theory of S waves in horizontally layered deposits, referred to as "1-D analysis of soil columns and most widely us ed has be en a dopted. T o c onsider no n l inear be havior of s oil e quivalent linear- method that us es a n iterative pr ocedure t o adapt t he s oil pa rameters (i.e., rigidity a nd da mping) t o t he a ctual s train i t unde rgoes has be en a dopted. R ecently developed c omputer pr ogramme D YNEQ, a c omputer P rogramme f or **DYN**amic Response Analysis due to EarthQuake(**DYNEQ**) at level ground by using Equivalent Linear Method(ELM), ve rsion 3.25 (N ozomu Y oshida a nd I wao S uetomi 2004),which i s s imilar t o S HAKE a nd a lso i ncorporate l atest de velopment s uch a s frequency dependent characteristics, as damping due to scattering etc. has been used. In D YNEQ pr ogramme some r outine h as be en added at E REC t o m ake m ore us er friendly plotting of final products.

2. Shear modulus reduction curves and damping curves

Non-linear analyses require a quantitative knowledge of the actual nonlinear material behavior, the s hear m odulus r eduction c urves, and da mping c urves. S ome ge neric average curves have been proposed for different types of material, as sand or clay, and available in s oftware d atabase p ackage, but the actual behavior of a given soil at a given site may strongly depart from these averages. In order to improve the accuracy in results, Resonant Column Test on representative samples of Sand, Clay and Silt of Delhi c ollected at different sites and at different depths to determine shear m odulus and damping ratio of soil under different confining pressure, etc have been conducted at Indian Institute of Science, Bangalore and used in place of generic average curves provided in database of the software.

3. Soil Model above engineering bedrock

The most important input information for the ground response analysis is a subsurface soil m odel that r epresents t he va riation of s tatic a nd dyna mic s oil p roperties a t

different depth interval from engineering bedrock to the surface. Therefore, to perform ground r esponse s tudy, a s oil c olumn up t o t he e ngineering be drock (Shear wave velocity about 760m/s) at which input motion is to be placed need to be generated.

This c an b e a chieved b y dr illing bor ehole up t o engineering be drock d epth, which depend upon t he na ture of the s oil a nd will be di fferent at di fferent sites. In the scenario like Delhi where alluvial sediment cover ranging to the depth from outcrop to the depth of more than 300m, and soil is basically D class, the engineering rock (Shear wave velocity 760m/s) may be expected at more than 70-80m depth at most of sites in NCT Delhi. As the level of engineering rock may be different at different sites and cannot be predetermined, therefore drilling to the depth level of engineering bedrock cannot be pl anned in advance. It is also practically not possible t o dr ill num ber of boreholes to such a depth to meet the requirement of map scale of the study.

In the present study the engineering bed rock depth having shear wave velocity of 760m/s at di fferent s ites have b een de lineated by extrapolating 30m soil model, beyond 30m depth by suitable linear regression analysis and comparing at a few sites with available deep boreholes data. While performing regression analysis misplaced local variations within 30m have been ignored to achieve regression coefficient (R^2) near unity. At the sites where it was not possible to obtained linearity, due to highly variable soil within 30m or ambiguity in SPT 'N' values at some level, engineering bedrock delineated at cl osest C HT/DHT s ite or ne arby bor ehole s ite ha s be en considered.

4. Peak Ground Acceleration at Surface

In the present study based on ge otechnical/geophysical investigations, subsequently generated s oil m odel a nd e arthquake a cceleration t ime h istories a t e ngineering bedrock, ground response analysis has been performed using DYNEQ software at 449 sites spread over NCT Delhi for (i) 2% probability of exceedance in 50 ye ar (based MCE) for 5% damping and(ii) 10% probability of exceedance in 50 ye ar (based on DBE) for 5% damping and site specific strong ground motion parameters and response spectra have been obtained. Based on acceleration time histories obtained at surface at all the sites for both period of exceedance, Peak Ground Acceleration (PGA), which is the ma ximum a mplitude of t he gr ound a cceleration time-histories have been evaluated.

PGA values for 2% probability of exceedance in 50 ye ars (MCE) for 5% damping varies between 0.168g to 0.479 g. The lower PGA values less than 0.18 are in rocky areas. PGA values at most of the sites are within 0.42g except at two sites, where PGA values are 0.47g and 0.44g respectively due to high impedance contrast between first two layers below ground surface. PGA values for 10% probability of exceedance in 50

year (DBE) for 5% damping varies between 0.089g and 0.255 g. PGA values at most of sites is below 0.21g except at a few site where PGA is between <0.21 to 0.255g.

5. Peak Ground Acceleration Maps at surface

Discrete site s pecific P GA values at 449 s ites have been converted in continuous surface us ing Inverse Distance W eighted (IDW) interpolation t echnique, us ing appropriate parameters and cross validation. Using this continuous dataset, PGA maps have been generated for (i) 2% probability of exceedance in 50 year (based on MCE) and (ii) 10% probability of exceedance in 50 year (based on DBE), (Map 22 & Map 23). PGA maps for both period of exceedance have also been generated for area covered by individual toposheets on 1:10,000 scale.

6. Uncertainty in results of Peak Ground Acceleration at surface based on MCE

Strong gr ound m otions time hi stories ha ve be en s imulated a t e ngineering be drock based on Uniform H azard R esponse S pectra (UHRS) obt ained f rom Probabilistic Seismic H azard A nalysis (PSHA) at di fferent s ites. These t ime histories ha ve be en used a s i nput gr ound m otions f or gr ound r esponse s tudy a nd ge neration of time histories a t s urface. S ubsequently PGA va lues a t s urface ha ve be en e valuated f rom these time histories. The uncertainty in e ach Uniform H azard R esponse Spectra ha s been pr esented as s tandard de viationi.e. M ean, Mean + sigma and M ean -sigma. In order to assess possible uncertainty in the results of PGA at engineering bedrock , at a few sites three spectrum compatible ground motion time histories have been generated based on three Uniform Hazard Response Spectra (UHRS) obtained at each site i.e. for Mean, Mean + sigma and Mean -sigma and PGA values have been evaluated. The uncertainties in PGA values thus obtained at engineering bedrock have been worked out t o b e on a n a verage ± 0.02 g f or M CE and 0,01 g f or D BE. T he a verage amplification f actor obt ained f rom g round r esponse is around 3 and therefore, the initially introduced uncertainty will increase by three times at surface.

Thus, the uncertainties in the resultsof PGA values evaluated at surface on an average are (i) $\pm 0.06g$ for MCE (2% probability of exceedence in 50 years) and (ii) $\pm 0.03g$ for DBE (10% probability of exceedance in 50 years). These uncertainties have been considered de ciding the cl ass i nterval for generating the maps and s ubsequently Seismic Micro zones.

7. Vertical Distribution of PGA

Local geological conditions, characteristics of the lithological attributes and depth play significant r ole i n va riation of P GA. T he s ignificant va riation i n P GA i s obs erved closed to surface i.e. below a few meter depths from ground level. F or example at Swarup Nagar, significant variation of ground motion (PGA) is due to the top about 9 m soil. At this site in case of MCE, PGA at surface is around 0.3g, which reduces to

0.15g at about 9m depth below ground level. The PGA at engineering bedrock at this site is 0.1g. PGA maps at 3m below ground and 6m below ground level have been presented as Maps 34 & 35 respectively.

8. Amplification Factor

The ratio of the PGA at zero period or infinite frequency at ground surfaceat particular site and the P GA at engineering be d r ock at z ero period or infinite frequency is considered as the Amplification factor of soil column. Amplification factors have been evaluated for both input motions based on MCE and DBE at all the 449 sites, which are s ame. The amplification factors for NCT D elhi s oil are less than 4.0 except at DDA O pen L and n ear Model town, where amplification factor is 4.6.Amplification factors for more than 75% sites are below 3.0.

Discrete values of site s pecific amplification f actors have b een converted i n continuous s urface us ing Inverse Distance Weighted (IDW) interpolation t echnique and ba sed on this c ontinuous da ta s et amplification maps for N CT Delhi has be en generated (Map 25). Amplification map for a reas covered by individual t oposheets have also been generated for all the 75 toposheets.

9. Acceleration Response Spectra for different sites of NCT Delhi

Response spectra is a plot showing the maximum response induced by the ground motion in single-degree-of-freedom os cillators of different fundamental periods, but having the same degree of internal damping. Thus the response spectrum describes the maximum response of a single-degree-of-freedom (SDOF) system to a particular input motion, as a function of the natural frequency (or natural period) and damping ratio of the SDOF system and is of great importance in earthquake engineering and useful tool for characterization of strong ground motion. Acceleration response spectra have been generated a t 449 s ites for 0 t o 3 s econds, s pread ov er N CT D elhi, for (a) 2% probability of exceedance in 50 years (MCE) for 5% damping and (b) 10% probability of exceedance in 50 years (DBE) for 5% damping and presented as district wise atlas.

10. Seismic H azard Map for d ifferent p eriod of s pectral a cceleration with (i) 2% probability of exceedance in 50 years for 5 % damping (based on MCE) (ii) 10% probability of exceedence in 50 years for 5 % damping (based on DBG)

On the basis of A cceleration response s pectra, spectral ac celeration values for the periods of 0.1 s, 0.3 s, 0.5 s and 1.0 s econds(equivalent to frequencies of 10, 3, 2, a nd 1.0 H ertz) c orresponds t o 1,3,5 a nd 10 s tories buildings respectively have b een evaluated at all the 449 s itesfor both period of exceedance. On the basis of these values based on DBE and MCE, fourseismic hazard maps have been generated for 0.1 s, 0.3 s, 0.5 s and 1.0 s, periods, which roughly corresponds to the natural frequency

of 1, 3, 5 and 10 stories buildings respectively. Maps26, 27, 28 and 29 are based on DBE, and Map30, 31, 32, 33 corresponds to MCE. These maps can be used to evaluate response of e arthquake ground motion on 1 s tory, 3 s tory, 5 s tory and 10 s tory buildings respectively.

11. Design Response Spectra

Response s pectra de rived f rom gr ound r esponse s tudy a re hi ghly i rregular; ve ry ragged with local peaks and valleys. A slight change in natural period can lead to large variation in maximum acceleration. It is understood by e ngineers that Natural period of a c ivil e ngineering s tructure cannot be c alculated s o pr ecisely and t herefore, t he design specifications should not very sensitive to a small change in natural period. In view of this actual response spectra are converted in design response spectra, which are usually determined by smoothing, averaging, or enveloping the response spectra. Therefore for a ctual e ngineering a pplication in vogue, a n effort has b een m ade t o develop design response spectra at all the 449 sites and given as district wise Atlas.

12 Multiplying Factors for obtaining PGA values for other damping

Seismic Hazard Microzonation Maps and response spectra have been generated based on an assumed 5% of critical damping. 5% damping used in the standard spectra in building c ode a pplication w as c hosen be cause it is a ppropriate for r ange of typical building structures. For other special structures, however, such as those used in powergenerating pl ants, dams, t ransmission t elecommunication f acilities and construction that utilizes damping devices, the structure damping be either high or lower than 5%.

To facilitate this Multiplying F actors for obtaining values for other D amping have been provided.

15.6 LIQUEFACTION SUSCEPTIBILITY

A s implified pr ocedure(Seed a nd I driss, 1971) a nd s ubsequent r evisions of t he simplified pr ocedures (Seed e t a l., 1983, 1985; Y oud a nd I driss, 2001; I driss a nd Boulanger, 2004; C etin et al., 2004), based on t he use of empirical correlations with standard pe netration t ests (SPT) has be en u sed f or e valuation of 1 iquefaction susceptibility of soil at different depth. Based on this Liquefaction susceptibility maps, for 0 -3m, 3 -6m a nd 6 -9m de pths a nd f or c onsolidated de pth of 0 -9m ha ve be en generated (Maps 36,37,38, and 39).

15.7 INTEGRATION OF SEISMIC HAZARD MAPS OF NCT DELHI

Different t hematic a nd pr oduct m aps ha ve be en i ntegrated i n GIS platform a nd integrated hazard index map of NCT Delhi on 1:10000 scale has been developed. The high hazard zones are in the area where either PGA at surface is high or possibility of

liquefaction has been observed. Most of the areas along Yamuna flood plan, scattered parts of northern Delhi having thick alluvial sediment, and a very small part of SW Delhi fall i n hi gh ha zard z one. T he l ow ha zard z one mainly oc cupies the a rea of central Delhi and along the ridge (Map 40).

15.8 QUANTIFICATION OF UNCERTAINTIES

There a re va rious t ypes of unc ertainties i n t he pr ocess of S eismic H azard Microzonation a nd a n e ffort has be en m ade t o identified, quantified a nd c ombined using appropriate statistical techniques. There are certain uncertainties particularly in data ge neration pr actices a nd a ll pos sible e fforts have be en m ade t o r educe t o t he possible extent by proper supervision and strictly compliance of codes.

15.9 COMPARISON OF RESPONSE SPECTRA WITH ACTUAL EARTHQUAKE

There is no s trong m otion e arthquake w hich c an be c ompared w ith t he r esponse spectra g enerated f rom the s tudy. C omparison of w eak a nd s trong m otion is not reasonable proposition due t o di fferent f requency c ontent, a mplitude, a nd e xpected nonlinearity; how ever, t o s ee a ny s imilarity, a c omparison ha s be en m ade w ith earthquakes of di fferent or igins. It s eems t hat s hape of t he r esponse spectra are reasonably matching to the possible extent.

15.10 SUGGESTIVE I MPLICATIONS OF DI FFERENT P ARAMETERS DERIVED F ROM T HE S TUDY O F S EISMIC H AZARD MICROZONATION F OR DE SIGN O F B UILDING CO DES AND L AND USE PLANNING OF NCT DELHI

The Study of Seismic Hazard Microzonation for such a large scale has been attempted for the first time in the country. As per definition and requirement of scale of the study, Seismic Hazard parameters required for design of building codes and land use planning have been estimated at 449 s ites. On the basis of methodology adopted for formulation of present building c odes based on pr esent S eismic Hazard map of the county, an effort has be en made to suggest c ertain equivalence and methodology to implement the seismic Hazard Microzonation parameters.

15.11 SEISMIC HAZARD PARAMETERS OF IMPORTANT STRUCTURES OF NCT DELHI

For a few i mportant s tructures, s uch a s hos pital, hi storical s tructure "Qutubminar" representative seismic hazard parameters, and response spectra have been given. These parameters may be used to evaluate present seismic response of the structures.

15.12 MONITORING AND REVIEW OF SEISMIC HAZAR MICROZONATION PROJECT

Seismic H azard Microzonation requires m ultidisciplinary data collocation, generation, integration of t he di fferent t ypes of i nformations (geologic, seismotectonic, Geotechnical, G eophysical, E arthquake), application o f di fferent mathematical tools (statistics, probability, and models) and decision making, which requires aproject structure and implementation process that assure proper quality data generation, s election of a ppropriate m odels, a ppropriate a nalytical a pproach, and integration. Further, there is not likely to be "consensus" among the various experts and no single interpretation concerning a complex earth-sciences issue is the "correct" one. Therefore, to address a di fficult technical issue and t o reach ne ar consensus results (i) a representation of the legitimate range of technically supportable experts among the e ntire inf ormed technical c ommunity, throughout t he pr ocess of microzonation (ii) assurance of good quality data generation, under the g uidance of experts, proper s upervision, a pplication of a vailable gui delines, c odes e tc. (iii) Selection of a ppropriate t echniques and m odels (iv) r egular r eview by t echnical experts, are required.

Keeping above in mind to make use of expertise available in the country, for better representation and for continuous monitoring and guidance of the project, Ministry of Earth S ciences ha d c onstituted a m ultidisciplinary A dvisory a nd M onitoring Committee unde r t he C hairmanship of P rof. A .S.Arya, F ormer S eismic A dvisor, Government o f I ndia, presently H on'ble M ember B ihar D isaster Management Authority a nd e xperts o f di fferent di sciplines as m embers of t he committee. F or continuous supervision and guidance, Advisory and Monitoring Committee met eight times during the c ourse of s tudy. To interact with legitimate r ange of te chnically supportable experts several interactive meetings and workshops were also organized during the course of study and formulation of report. Report has been reviewed by the members of t he c ommittee a nd m ade s uggestions, w hich ha ve a ppropriately be en incorporated. A brief on review and monitoring process adopted during the course of implementation of report is given in Annex-II.

15.13 CONCLUSIONS

The seismic hazard analysis of NCT Delhi is based on a state-of-the-art Probabilistic Seismic Hazard A nalysis (PSHA) us ing di fferent s ource models (Line and Aerial) and attenuation relations. Earthquake sources and parameters have been considered for the area covered under 350 km radius from Delhi, (Latitude $24^{0} - 31.5^{0}$ N and Longitude $74^{0} - 81.5^{0}$ E), similar to the other such studies (Iyenger and Ghosh 2004, Gupta 2005). This area includes part of H imalayan region in which earthquake of

maximum m agnitude r ecorded s o for i s t he C homali e arthquake (M 6. 9) of 1999, which is about 300 km from Delhi and produced horizontal PGA of 11 cm/s^2 at Delhi. Selections of m odels and attenuation relations e tc have be en made after el aborate discussion a mong t he e xperts. T o i ncorporate u ncertainty associated with different modeling parameters as well as spatial and temporal uncertainties logic tree approach has be en a dopted. O n t he ba sis of P SHA, S pectral A cceleration m aps a nd site specific Uniform H azard Response S pectra (UHRS) f or di fferent pr obability of exceedance at engineering bedrock (shear wave velocity 760 m/s) have been derived. These Uniform H azard R esponse S pectra (UHRS) f or di fferent pr obability of exceedance have been used for generation of spectrum compatible acceleration time histories.

The PGA for Delhi obtained for PSHA analysis at engineering bedrock varies from 0.18g to 0.31g f or M CE and 0.09g t o 0.16g f or D BE.Iyengar and G hosh (2004) carried out PSHA analysis for Delhi and obtained PGA at rock level for MCE varied from 0.186 to 0.241g, which are comparable and small difference is due to reference rock level.

There have been a few studies on regional level and generated Probabilistic Seismic Hazard Map of the country and assigned representative values of PGA for Delhi. A working group constituted by NDMA has generated PSH map of the country which is in the process of adoption by BIS, assigned PGA value for Delhi 0.170g for MCE and 0.08g for DBE at 'A' type rock, having Shear wave Velocity 1500m/s Iyengar et al. (2010). As a part of Global Seismic Hazard Programme (GSHAP), Probabilistic Seismic H azard M ap ha s be en generated f or I ndia and adjoining r egion and the representative value of PGA for Delhi is 0.15g based on DBE at rock level (Bhatia et al., 1999).

A Probabilistic Seismic Hazard Map of India has also been generated by Nath and Thingbaijam (2011) and assigned PGA value for Delhi 0.24g at rock level based on DBE. A Probabilistic Seismic Hazard Map of India has also been generated by Sitharam and Kolathayar(2012) using different source models and evaluated different PGA values for Delhi at rock level from different source models (i) based on Aerial Source model PGA worked out 0.16g based on DBE and 0.43g based on MCE (ii) based on gridded seismicity model 0.18g for DBE and 0.36g for MCE (iii) based on Linear Source model 0.33g for DBE and 0.6 for MCE.

The P GA values obtained f rom c ity s pecific s tudies a rec omparable. T he representative values assigned from the regional studies are also comparable, except from PSHA map generated by Nath and Thingbaijam (2011), where PGA values are comparatively high for all the cities due to the reason briefed in the paper.

Site specific Uniform Hazard Response Spectra have been used for generation of site specific spectrum compatible acceleration time histories at 449 sites after adopting due procedure, applying free surface correction etc and us ed as input motion for further ground response study. On the basis of time histories free surface corrected Peak G round Acceleration values at the all 449 sites for different period of exceedance have been evaluated. The Peak Ground Acceleration after free surface correction at engineering bedrock varies from 0.067g to 0.114g for MCE andfrom 0.035g to 0.058g, for DBE.

A comprehensive programme of geotechnical, geophysical investigations have been taken up f or s ite characterization, a nd g round r esponse s tudy. At 449 s ites geotechnical data have been collected by drilling boreholes, mostly up to 30m depth and DS/UDS s oil s ampling at e ach 1.5 m de pth. Index properties of s oil from all collected soil samples have been evaluated in laboratories. On a few samples special tests s uch as tr iaxial /c yclic tr iaxial a nd Resonant C olumn tests ha ve also been performed for evaluation of 'C', 'Ø', Shear modulus reduction and damping curves etc. G eophysical i nvestigations s uch a s M ASW at 110 s ites a nd C HT/DHT at 25 sites have also been carried out for evaluation of in-situ shear wave velocity. On the basis of in-situ shear wave velocity and N values collected at a f ew common sites local empirical relations have been developed for different types of soil, to make use of N value for evaluation of shear wave velocity.

Making use of the above data and input time histories generated based on UHRS, ground r esponse s tudy have be en performed at all the 449 s ites, using D YNEQ software. Based on ground response study PGA at surface, PGA at different depth, Amplification factor, Peak frequency, Peak amplification, have been evaluated at all the 449 s ites. Site s pecific di fferent t ypes of r esponse s pectra have al so been generated at all the 449 sites. Based on response spectra spectral acceleration values at different periods have been evaluated for all the 449 sites.

Discrete s ite s pecific v alues of di fferent pa rameters e valuated at all the 449 sites have been converted in continuous surface using Inverse Distance Weighted (IDW) interpolation technique. Making use of this continuous data different thematic maps have be en ge nerated for (i) 2% p robability of exceedance in 50 ye ar (based on MCE) and for (i) 10% probability of exceedence in 50 ye ar (based on DBE). Site specific values can be picked up f rom these G IS base maps and may be used for design of buildings at those particular sites

The PGA at surface is one of the important parameters used for design of buildings in conjunction with response spectra and other parameters. Zone factors assigned to the different seismic zones in seismic zoning map of the country are equivalence of PGA. PGA at surface obtained from the ground response study for 2% probability of exceedance in 50 years (MCE) for 5% damping varies between 0.168g to 0.479 g. The lower PGA values less than 0.18 are in a very small area of ridge. PGA values at most of the sites are within 0.42g except at two sites, where PGA values are 0.47g and 0.44g r espectively due t o hi gh i mpedance c ontrast be tween first t wo l ayers below gr ound s urface. PGA values for 10% p robability of e xceedance in 50 ye ar (DBE) for 5% damping varies between 0.089g and 0.255 g. PGA values at most of sites is below 0.21g except at a few site where PGA is between <0.21 to 0.255g.

Uncertainties in evaluation of PGA at surface have also been worked out which are \pm 0.06g for MCE and \pm 0.03g for DBE. In order to develop microzonation map of NCT Delhi, similar to the zoning map of the country, considering uncertainties of \pm 0.06g, the PGA values based on MCE have been grouped in following three classes, with center values equivalent to the zone factors as signed to the different zones in BIS map of the country.

>0.18 g equivalent of zone factor of Zone III

<0.18 to 0.30 with central value 0.24 g equivalent of zone factor of Zone IV

<0.30 to 0.42 with central value 0.36g equivalent to zone factor of Zone V

<0.42 more than zone factor of zone V

PGA map at surface b ased on MCE indicates t hat (i) M ost of the ar ea of N CT Delhihave PGA values equivalent to the zone factor of zone IV i.e. 0.24 (ii) An area of about 500 s q km (33 % of the total area of NCT Delhi), mostly west of N CT Delhi, with small microzones in ot her parts of N CT D elhi ha ve P GA values equivalent to the zone factor of zone V i.e.0.36 (iii) A very small area of about one squire km has even more PGA values, due to very specific local soil conditions (iv) The PGA values in ridge area are not uniformly distributed. PGA values in a very small area near JNU are equivalent to zone factor of zone III and in remaining part of the ridge PGA values are equivalent to zone factor of zone IV.

Thus, the structures in the areas having high PGA values i.e. equivalent to zone V need to be reassessed about the seismic vulnerabilities. However, based on vertical distribution of PGA, it is not ed that the significant variations in PGA is observed closed to the surface below a few meter depths from ground level. For example at a few sites PGA values at 6-9m below ground surface reduces half to the PGA values of surface. PGA map of 3 m below ground level indicates that distribution of PGA values at entire NCT Delhi is equivalent to the zone factor of zone IV. The structures having foundation below such depths may possibly not be affected with high PGA values at surface.

Peak frequency (Natural frequency) and Peak amplification of soil column above seismic bedrock have been evaluated at 500 sites using Nakamura technique based on noise survey and Peak frequency and Peak amplification of soil column above engineering bedrock have also been evaluated at 449 sites using numerical technique, to be used for deciding sites for construction of buildings of appropriate height to avoid resonance.

Liquefaction susceptibility of soil at different depths has also been carried out and site specific factor of safety have been evaluated using a simplified procedurebased on empirical correlations with standard penetration tests (SPT).
REFERENCES

Abrahamson, N. A. a nd L itehiser, J. J. (1989), "Attenuation of vertical p eak accelerations", Bulletin of the Seismological Society of America, 79, 549–580.

Abrahamson, N.A. a nd S ilva, W.J. (1997), "Empirical R esponse S pectral A ttenuation Relations for S hallow C rustal E arthquakes", S eismological R esearch L etters, V ol. 68, No. 1, pp. 94–127.

Abrahamson, N.A. (2000), "State of the Practice of Seismic Hazard Evaluation," GEOE 2000, 19-24, November 2000, Melbourne.

Abrahamson, N. A. a nd B ommer, J. J. (2005), "Opinion P apers: P robability a nd Uncertainty in Seismic Hazard Analysis," Earthquake Spectra, Vol. 21, pp. 603-607.

Agrawal, S.K., and Chawla, J. (2006), "Seismic hazard assessment for Delhi R egion," Current Science, 91(12), 1717-1724.

Aki, K., (1957), Space and time spectra of stationery stochastic waves special reference to microtremors, Bull. Earthq. Res. Inst., 415-456.

Aki,K. (1965), "Maximum likelihood estimate of b i n the formula log N=a-bM and its confidence limits," Bull. Earthq. Res. Inst. Tokyo Univ, 43 237-239.

Aki, K. a nd C houet, B. (1975), "Origin of c oda w aves: s ource, a ttenuation a nd scattering effect", *J. Geophys. Res.*, v80, pp. 3322–3342.

Aki,K. and P.G.Richards (1980), Quantitative Seismology, Vol. I, W.H. Freeman, San Fransisco.

Aki, K ., (1988), "Local s ite e ffects on S trong G round m otion". In: E arthquake Engineering and S oil D ynamics II – Recent A dvances in G round M otion E valuation, June 27-30, Park City, Utah.

Aki, K. and Irikura, K., (1991), "Characterization and mapping of earthquake shaking for seismic z onation", P roceedings of t he F ourth I nternational C onference on S eismic Zonation, August 25-29, Stanford, California, E.E.R.I (editor), Oakland CA, 1, 61-110.

Aki, K ., (1993), "Local s ite e ffects on W eak and S trong g round m otion". Tectonophysics 218, 93-111.

Algermissen, S.T., Perkins, D.M., Thenhaus, P.C., Hanson, S.L., Bender, B.L. (1982), "Probabilistic estimates of maximum acceleration and velocity in rock in the contiguous United States", Open-File Report 82-1033, U.S. Geological Survey, Washington, D.C., pp. 99. Al-Hunaidi, M.O., (1992), "Difficulties with ph ase s pectrum unw rapping i n s pectral analysis of surface waves nonde structive testing of pavements". Can. Geotech. J., 29, 506-511.

Ambraseys N .N. (1988), "Engineering s eismology. E arthquake E ngineering and s oil Dynamics", n $^{\circ}$ 17, pp. 1 – 105.

Ameer, S., M. L. Sharma, H. R. Wason and A. A lSinawi (2005), "Conversion of magnitudes f or as sessment of r ecurrence t ime i n revised Iraq seismicity catalogue" Symposium on Seismic Hazard analysis and Microzonation," Roorkee (India), September 23-24, 2005), Volume I,201-211

Anderson, J. G., (1979) "Estimating the Seismicity from Geological Structure for Seismic Risk Studies," Bulletin of the Seismological Society of America, V69, 135-158.

Anderson, J. G. and Trifunac, M. D. (1978), "Uniform R isk F unctionals f or Characterization of S trong E arthquake G round Motion", B ulletin of the S eismological Society of America, Vol. 68, No. 1, pp. 205–218.

Anderson. J.G., Y.Lee, Y.Zeng and S.M. Day (1996), "Control of Strong motion by upper 30meters", Bull. Seism. Soc. Am., 86, 1749-1759.

Anagnos, T. and Kiremidjian, A.S. (1988), "A Review of Earthquake Occurrence Models for Seismic Hazard Analysis", Probabilistic Engineering Mechanics, Vol. 3, No. 1, pp. 3–11.

Anagnos, T., a nd K rremidjian, A.S. (1982), "Stochastic time -predictable m odel f or earthquake occurrences," Bulletin of the Seismological Society of America, 74 (6) 2593-2611.

Anbazhagan, P. and S itharam, T. G. (2008), "Seismic M icrozonation of B angalore," Journal of Earth System Science, 117, S2, pp 833-852.

Andrews, D. J. (1986), 'Objective determination of source parameters and similarity of e arthquakes of di fferent s ize, i n E arthquake Source M echanics', S. D as, J. Boatwright, and C. H. Scholz (Editors), A merican G eophysical U nion, W ashington, D.C., 259–268.

Andrews, D. A. C. and Martin, G. R. (2000), Criteria for lique faction of silty soils. Proc. 12th World Conf. on Earthquake Eng., Upper Hutt, New Zealand, NZ Soc. for Earthquake Eng., Paper No. 0312.

Andrus Ronald D. and Kenneth H. Stokoe (1997), Liquefaction Resistance Based on Shear w ave ve locity" NCEER W orkshop on Evaluation of L iquefaction of S oils, Technical R eport N CEER-97-0022. T .L.Youd a nd I .M.Idriss, E ds.4-5, J an.1996, Nat.Ctr for earthquake Engineering Res.NY pp. 89-128 Arango, I. (1996), "Magnitude scaling factors for soil liquefaction evaluations." J. Geotech. Engrg., ASCE, Vol.122(11), pp 929–936.

Argand E. (1924) Int. Geol. Congr., 13, 171-372.

Association Francaise De Genie Parasismique (1990), Recommendations A FPS B ard P.Y. Durville J.L., Meneroud J.P., Mouroux P., 1992 – Recent advances in earthquake engineering and structural dynamics – Foreword: Ray W. Clough, Coordinating editor: V. DAVIDOVICI, AFPS, Ouest Edition.

Atakan, K., M.Ciudad Real, R. Torres and J.C. Figueroa, (1997), 'Local site effects on microtremors, weak and strong ground motion in San Salvador', El Salvador

Atakan, K., M.Ciudad Real, and R. Torres (2004), 'Local site effects on microtremors, weak and strong ground motion in San Salvador', EI Salvador, Geological Society of America Special Papers, 2004, 375, p. 321-338,

Atkinson, G. M., and Charlwood R. G. (1983), "Uncertainties in probabilistic s eismic hazard a ssessment as a function of probability level: A c ase hi story for V ancouver, British Columbia," Bulletin of the S eismological Society of America, V73 (4), 1225 – 1241.

Bakir, B.S., Yilmaz, M.T., Yakut, A., and Gulkan, P (2005), "Re-examination of damage distribution in Adapazari: geotechnical considerations" Eng. Struct.27(7),2005,pp.1002-1013.

Baker, J. W. (2008), "An Introduction to Probabilistic Seismic Hazard Analysis (PSHA)" Report, Version 1.3, US Nuclear Regulatory Commission, USA

Baker, J. W., and Cornell, C. A. (2006), "Correlation of r esponse s pectral values for multi-component ground motions." Bulletin of the S eismological S ociety of A merica, 96(1), 215-227.

Bansal, B. K., Singh, S. K., Dharmaraju, R., Pacheco, J. F., Ordaz, M., Dattatrayam, R. S. and Suresh, G.,(2009), "Source study of two small earthquakes of Delhi, India, and estimation of ground motion from future moderate, local events". *J. Seismol.*, 2009, **13**, 89–105.

Bansal B. K. and Mithila Verma (2012), 'The *M* 4.9 Delhi earthquake of 5 March 2012'' Current Science Vol. 102, NO. 12, 25 June 2012.

Barani, S., S pallarossa, D., B azzurro, P., a nd E va, C. (2007), "Sensitivity analysis of seismic ha zard for Western Liguria (North Western Italy): a f irst at tempt towards the understanding and quantification of hazard uncertainty," Tectonophysics, 435, 13-35.

Bard, P. Y., M. Campillo, F. J.Chavez-Garcia and F.J.Sanchez-Sesma, (1988), 'Atheoretical investigation of large and small scale amplification effect in the Mexico City valley', Earthquake Spectra, 4-3,609-633.

Bard, P.Y.,(1994), 'Effect of surface geology on s trong Ground Motion: Recent results and remaining issues', Proc. 10th European Conf.Earthq. Eng., Vienna, Austria, 1,305-323.

Bard, P.Y., A.M.Duval, B.Lebrun, C.Lachet, J.Riepl., and Hatzfeld, (1997), 'Reliability of t he H /V t echnique for s ite e ffects m easurements: an experimental as sesment', Seventh I nternational Conference on S oil D ynamic a nd E arthquake E ngineering, Istanbul, July 19-24, 1997.

Bard P.Y., (2000), 'Lecture n ote a nd E xercise not e on S eismology; Seismic da ta analysis, Hazard assessment and Risk Analysis'.

Bardet, J. and Kapuskar, M. (1993). "Liquefaction Sand Boils in San Francisco during 1989 loma prieta earthquake." J. Geotech. Engrg., 119(3), 543–562.

Barnett, V.D. (1967), "A not e on l inear s tructural r elationships w hen bot h r esidual variances are known," Biometika, 54, 670-672

Bath, M . (1968), Handbook on e arthquake m agnitude de termination, 2nd e d. Seismological Institute, Uppsala,131

Beauval, C., a nd S cotti, O. (2004), "Quantifying Sensitivities of P SHA for F rance t o Earthquake C atalog U ncertainties, T runcation of G round-Motion V ariability, a nd Magnitude L imits,"Bulletin of t he S eismological S ociety of America, V94 (5), 1579-1594.

Beauval, C., H ainzl, S. a nd S cherbaum, F. (2006), "Probabilistic S eismic H azard Estimation in Low-Seismicity R egions C onsidering N on-Poissonian Seismic Occurrence", Geophysical Journal International, Vol. 164, No. 3, pp. 543–550.

Been, K. and M.G. Jeffries, (1985), "A state parameter for sands," Geotechnique, Vol. 35, No. 2, pp. 99–112.

Been, K., J.H.A. Crooks, D.E. Becker and M.G. Jeffries, (1986), "The cone penetration test in sands; Part I: State parameter interpretation," Geotechnique, Vol. 36, No. 2, pp. 239–249.

Been, K., M.G. J effries, J.H.A. C rooks a nd L. R othenburg, (1987), "T he cone penetration test in sands; P art II: G eneral inference of state," G eotechnique, V ol. 37, No. 3, pp. 285–300.

Bhatia S.C., M. R avi K umar, and H.K.Gupta (1999), "A probabilistic s eismic ha zard map of India and adjoining region", Ann.Geofic.42,1153-1164

Bhandari, R.K., Rajarathnam, S., Janardhanan, G. and Ganapathy, G.P. (2003), "Seismic Microzonation" A T raining pr ogarmme gui de, publ ished by C entre f or D isaster Mitigation and Management, Anna University, Chennai, India, P-140.

Bhattacharya, S. N., Shukla A. K., Prakash Rajesh, Gautam, J. L. and Verma R. K. (2001), Seismicity of National Capital Territory Delhi. Proc. International Seminar on Earthquake Strategies with Particular Reference to India, New Delhi, pp1-10.

Bilham, R. (2004), "Earthquakes in I ndia and the H imalaya: t ectonics, ge odesy and history," Annals of Geophysics, 47(2), 839-858.

Bindi, D., S. Parolai, D. Spallarossa & M C attaneo, (1998), "Site effects and H/V methods: comparison of different approaches", *Fourth EEGS Meeting*

Blazquez, R., Krizek, R. J., and Ba ' zant, Z. P,(1980), "Site factors controlling liquefaction", J. Geotech. Eng.-Asce, 106, 785–801, 1980.

Boatwright, J., J. B. Fletcher, and T. E. Fumal (1991), "A general inversion scheme for source, site, and propagation characteristics using multiply recorded sets of moderate-size earthquakes", Bull. Seism. Soc. Am. 81, 1754–1782.

Bolt, B.A. (1973), "Duration of s trong gr ound m otion", P roceedings, 5t h W orld Conference on Earthquake Engineering, Rome, 1304–1313.

Bolt, B.A. (1989), "The Nature of Earthquake Ground Motion" in The Seismic Design Handbook F. Naeim ed., van Nostrand Reinhold.

Bonilla,L.F.,J.H.Steidl,G.T.Lindley, A.G.Tumarkin a nd R.J. A rchuleta, (1977), Site amplification in theSan Fernando valley, California: variability of site effect estimation using S-wave, coda, and H/V methods. BSSA. 87-3, 710-730

Bommer, J.J., (2003), "Uncertainty a bout the uncertainty in seismic hazard analysis," Engineering Geology, 70, 165-168.

Bommer, J.J., Scherbaum, F., Bungum, H., Cotton, F., Sabetta, F. and Abrahamson, N.A. (2005), "On the Use of Logic Trees for Ground-Motion Prediction Equations in Seismic-Hazard Analysis", Bulletin of the Seismological Society of America, Vol. 95, No. 2, pp. 377–389.

Bommer, J.J. and Abrahamson N. (2006), "Review Article "Why do Modern Probabilistic Seismic Hazard Analyses Often Lead to Increased Hazard Estimates?," Bulletin of the Seismological Society of America, Vol. 96, pp. 1967-1977.

Bommer, J. J., S cherbaum, F., (2008), "The Use and M isuse of Logic T rees in Probabilistic Seismic Hazard Analysis", Earthquake Spectra, Vol. 24, 997 – 1009.

Boore, D.M, (1983), "Stochastic simulation of high frequency Ground Motion Based on Seisological Models of Radiated Spectra", Bulletin of Seismological Socity of America, Vol. 73, No.6, PP.1865-1894 Boore, D.M. and Joyner, W.B. (1997), "Site amplifications for generic rock sites", Bull. Seism.Soc.Am., 87:2, 1997, 327-341

Boore, M. David, (2004), "Estimating Vs(30) (or NEHRP Site Classes) from Shallow Velocity Models(Depths _ 30 m);Bulletin of the Seismological Society of America, Vol. 94, No. 2, pp. 591–597, April 2004

Boore, D.M., and Atkinson, G.M. (2008), "Ground-Motion Prediction Equations for the Average Horizontal Component of PGA, PGV, and 5%-damped PSA at Spectral Periods between 0.01 s and 10.0 s" Earthquake Spectra, Vol.24, PP.99-138.

Borcherdt,R.D. (1970), "Effects of local geology on ground motion near San Fransisco Bay", Bull. Seism. Soc. Am.,60,29-61

Borcherdt, R .D. (1996), "Preliminary a mplification estimates in ferred from strongground motion r ecordings of the N orthridge e arthquake of J anuary 17, 1994", Proc. Int. Workshop on Site Response Subjected to Strong Ground Motion, Vol. 1,Port and Harbor Research Institute, Yokosuka, Japan.

Borcherdt, R.D. and Gibbs, J.F. (1976), "Effects of Local Geological Conditions in the San Francisco Bay Region on Ground Motions and the Intensities of the 1906 Earthquake", *BSSA*, (66): 467-500.

Borcherdt, R.D. and Glassmoyer, G. (1994), "Influences of local geology on strong and weak ground motions recorded in the San Francisco Bay region and their implications for s ite-specific bui lding-code p rovisions T he Loma P rieta, California Earthquake of October 17, 1989 -Strong G round M otion." U.S. G eol.Surv. P rofess. P ap., 1551 - A, A77-A108.

Borcherdt, R.D. (1994), "Estimates of s ite-dependent r esponse s pectra f or d esign (methodology and justification)," Earthquake Spectra, 10(4), 617-653.

Borcherdt, R.D. (2002), "Empirical evidence for acceleration-dependent amplification factors." Bulletin of the Seismological Society of America, 92, 761 -782.

Bottari, A., and Neri, G. (1983), "Some statistical properties of a sequence of historical Calabro-Peloritan earthquakes," J. Geophys. Res. 88, 1209-1212.

Bray, J.D. and R.B. Sancio, (2006), "Assessment of the Liquefaction Susceptibility of Fine-Grained S oils," J ournal of G eotechnical a nd G eoenvironmental Engineering, ASCE, S eptember 2006, V ol. 132, N o. 9, pp. 1 165-1177, doi: 10.1061/(ASCE)1090-0241(2006)132:9(1165).

Brankman, C. M., B aise, L. G., H iggins, R. B. a nd D awson, K. M. (2004), "Liquefaction hazard mapping in Boston, Massachusetts: Collaborative R esearch with William L ettis & Associates, I nc., and T uts U niversity", Published i n w ebpage, http://earthquake.usgs.gov/research/external/ reports/02hqgr0040.pdf

Budnitz, R. J., G. A postolakis, D. M. B oore, L. S. C luff, K. J. C oppersmith, C. A. Cornell, and P. A. Morris.(1997), "Recommendations for PSHA: guidance on uncertainty and use of experts " (No. NUREG/CR-6372-V1).

Bullen,K.E., (1965), "An I ntroduction t ot he Theory of s eismology", C ambridge University Press, Cambridge.

Cao, A.M., a nd S. S. G ao (2002), "Temporal v ariation of s eismic b -values be neath northeastern Japan Island Arc," Geophys. Res. Lett. 29, no 9.

Cardona O.D., H ansjurgen M eyer, (1991), "Integrated urban seismic r isk mitigation project – Its coordination and management in Cali, Colombia", Proceeding of the Fourth International Conference on Seismic Zonation, pp. 139-147.

Casagrande, A., (1936), "Characteristics of cohesionless soils affecting the stability of slopes and Herat files," Journals of the Boston Society of Civil Engineers, reprinted in Contributions of Soil Mechanics, Boston Society of Civil Engineers, 1940, pp. 257 – 276.

Casagrande, A., (1976), "Liquefaction and cyclic mobility of sands: a critical review," *Harvard Soil Mechanics Series* 88, Harvard University, Cambridge, Massachusetts.

Castro, G., (1969), "Liquefaction of sands," Harvard Soil Mechanics Series 87, Harvard University, Cambridge, Massachusetts.

Castro, G. (1969), "Liquefaction of s ands", Harvard S oil M echanics Series N o. 81. Harvard University, Cambridge, Mass.

Castro, G. and S.J. Poulos, (1977), "Factors affecting liquefaction and cyclic mobility," Journal of the Geotechnical engineering Division, ASCE. Vol. 106, No. GT6, pp. 501–506.

CETE Mediterranee, LCPC, BRGM, 1989 – Plan d'exposition aux risques sismiques – Guide methodologique pour la realization des etudes techniques. GS 86484 – Ministere de l'Environnement, Delegation aux Risques Majeurs.

Cetin, K.O, Seed, R.B., Kiureghian, A.D., Tokimatsu, K., Harder, L.F. Jr., Kayen, R.E., and M oss, R .E.S. (2004), 'Standard pe netration test-based p robabilistic a nd deterministic a ssessment of s eismic s oil liquefaction potential'', J ournal of Geotechnical and Geoenvironmental Engineering, 12, pp 1314-1340.

Chang K.T., (1978), "An Analysis of Damage of Slope Sliding by Earthquake on the Paiho Main Dam and its Earthquake Strengthening," Tseng-hua Design Section, Dept. of Earthquake-Resistant Design and Flood Control Command of Miyna Reservoir, Peoples Republic of China.

Chauhan, R.K.S. (1975), "Seismotectonics of Delhi Region", Proc. INSA, Vol. 41, pp. 429-477.

Chavez-Garcia, F.J., and J.Cuenca, (1996). 'Site effects in Mexico City urban zone' A complementary study, *Soil Dynamics and Earthquake Engineering* 15, 141-146.

Chavez-Garcia, F.J., Sanchez, L.R., and Hatzefld, D., (1996), 'Topographic Site Effects and HVSR. A comparison between observations and Theory', Bull. Seismol. Soc. Am. 89(3), 1559-1573.

Chernick, M. R. (1999), "Bootstrap methods: A practitioner's guide, in Wiley Series in Probability and Statistics," W. A. Shewhart (Editor), Wiley and Sons, Inc., New York.

Chiou, B.S.-J., Darragh, R., and Silva, W., (2008), "An Overview of the NGA Database" Earthquake Spectra, Vol.24, PP.23-44.

Clark, G.C., Davies, R.G., Hamzepour, G., Jones, C.R., (1975). Explanatory text of the Bandar-e-Pahlavi quadrangle map, 1:250,000. Geological Survey of Iran, Tehran, Iran. pp.198 Committee on Seismic Risk, 1984, "Glossary of terms for probabilistic seismic-risk and hazard analysis," Earthquake Spectra, Vol. 1, No. 1, pp. 33–40.

Cluff, L.S., A.S.Patwardhan, and Coppersmith K.J. (1980), "Estimating the probability of occurrences of surface faulting earthquakes on the Wasatch Fault zone, Utah," Bulletin of the Seismological Society of America, V70, 463–478.

Congalton, R. (1991), A R eview of A ssessing the A ccuracy of C lassifications of Remotely Sensed Data. Remote Sensing of Environment 37: 35-46.

Cornou, C., (1998), Etudes t heoriques e t num eriques s ur l a m ethode de *Nakamura-Nogoshi, Memoire de Diplome d'Ingenieur, EOST Strasbourg,* LGIT G renoble, 132 pages (in French).

Coulter, H.W., and Migliaccio, R.R. (1966), "Effect of earthquake of March 27, 1964 at Valdez, A laska." U.S. Geol. S urvey P rofessional P aper 542 -C, U.S. D ept. of t he Interior, Washington, D.C.

Console, R., a nd M urru, M. (2001), "A s imple a nd t estable m odel for e arthquake clustering," J. Geophys. Res. 106, 8699-8711.

Coppersmith, K.J. (1981), "Probabilities of earthquake occurrences on S an Andres fault based geologic risk," EOS, Vol. 19(17), pp. 322.

Coppersmith, K.J., Youngs, R.R. (1986), "Capturing uncertainty in probabilistic seismic hazard assessments within intraplate tectonic environments," Proceedings of the Third U.S. National Conference on Earthquake Engineering, vol. 1, pp. 301-312.

Cornell, C.A. (1968), "Engineering seismic risk analysis", Bull. Seism. Soc. Am., 58,1583 1606.

Cornell, C. A. and Merz, H. A. (1975), "Seismic risk analysis of Boston," J. Struct. Div. ASCE, 101, 2027–2043.

Cornell, C. A. (1968), "Engineering S eismic R isk A nalysis", B ulletin of t he Seismological Society of America, Vol. 58, No. 5, pp. 1583–1606.

Cornell, C.A. and Winterstein, S.R. (1988). "Temporal and Magnitude Dependence in Earthquake Recurrence Models", Bulletin of the Seismological Society of America, Vol. 78, No. 4, pp. 1522–1537.

Cotton, F., Scherbaum, F., Bommer, J.J. and Bungum, H. (2006), "Criteria for Selecting and A djusting G round-Motion M odels f or Specific T arget R egions: Application t o Central Europe and Rock Sites," Journal of Seismology, Vol. 10, No. 2, pp. 137–156.

Cramer, C.H. (2001), "A seismic hazard uncertainty analysis for the New Madrid seismic zone," Engineering Geology 62, pp. 251-266.

Cramer, C. H., P etersen, M. D., R eichle, M. S. (1996), "A M onte C arlo a pproach i n estimating uncertainty for a s eismic ha zard a ssessment of L os A ngeles, V entura, and Orange C ounties, C alifornia," B ulletin of the S eismological S ociety of America, V 86, 1681–1691.

Cramer, C.H., Wheeler R.L. and Mueller C.S. (2002), "Uncertainty analysis for seismic hazard in the Southern Illinois Basin

Dasgupta, S., Pande, Prabhas, Ganguly, D., Iqbal, Z., Sanyal, K., Venkatraman, N. V., Dasgupta, S., Sural, B., Harendranath, L., Mazumdar, K., Sanyal, S., Roy, A., Das, L.

De Natale, G., and Zoro, A. (1986), "Statistical analysis and clustering features of the Phlegraen Fields e arthquake s equence," B ulletin of t he S eismological S ociety of America, V76, 801-814.

Despeyroux J., G odefroy P., (1986), Nouveau zonage s ismique d e l a F rance. La Documentation francaise, Paris.

Delgado, J., L opez C asado, C., E stevez, A.C., Giner, J., Cuenca, A. a nd M olina, S. (2000a), "Microtremors as a geophysical exploration tool: application amd limitations"., Pure Appl. Geophys. 157, 1445-1462.

Delgado, J., L opez C asado, C., E stevez, A.C., Giner, J., Cuenca, A. a nd M olina, S. (2000b), "Mapping of s oft s oils i n the S egura valley (SE S pain): a c ase s tudy of microtremors as an experimental tool". J. Appl. Geophy. 45, 19-32.

Dewey J.F. and Bird J.M. (1970), Geophys. J. Res., 75(14), 2625-2647.

Dikmen, S.U. and J. Ghaboussi, (1984), "Effective stress analysis of seismic response and liquefaction, theory," *Journal of Geotechnical Engineering*, ASCE, Vol. 110, No. 5, pp. 628–644.

Dobary R ., O weis I . U rzuaA., (1976), "Simplified procedures f or e stimating the fundamental period of a soil profile", Bulletin of Seismological Society of America, no 66, pp. 1293-1321

Dobry, R., I.M. Idriss, and E. Ng (1978), "Duration Characteristics of Horizontal Components of Strong-Motion Earthquake Records." Bull Seismol. Soc. Am. 68, 1978: 1487–1520

Douglas, J. (2000), "A C omprehensive W orldwide S ummary of S trong-Motion Attenuation Relationships for Peak Ground Acceleration and Spectral Ordinates (1969 to 2000) ", E SEE R eport 01 -1 D epartment of Civil a nd E nvironment Engineering, Imperial College, London

Douglas, J., B. ungum, H. and S. cherbaum, F. (2006), "Ground-Motion P rediction Equations for S outhern S pain and S outhern N orway O btained U sing the C omposite Model Perspective", Journal of Earthquake Engineering, Vol. 10, No. 1, pp. 33–72.

Dravinski, M., G.Ding, and K.L. Wen, (1996), "Analysis of sectral ratios for estimating ground motion in deep basins", Bull.Seism.Soc.Am., 86-3, 646-654.

Draper, N.R. and Smith, H. (2005), "Applied regression analysis", John wily & Sons (Asia) pvt. Ltd.

Duval, A.M., P.Y. Bard, J.P. Meneroud and S.Vidal, (1994), "Usefulness of microtremor measurements for site effect studies", Proceedings of the 10th European Conference on Earthquake Engineering, Vienna, Austria, Balkema, Duma Ed., I, 521-528.

Duval, A.M., P.Y. Bard, J.P. Meneroud and S.Vidal, (1995), "Mapping site effects with microtremors" Proceedings of the Fifth International Conference on S eismic Zonation, October 17-19, 1995, Nice France II, 1522-1529.

Duval, A.M., J.P. Meneroud and S.Vidal, and A. Singer (1998), "Relations between curves obt ained f rom microtremor and site effects obs erved after C aracas 1967 earthquake", Proceedings of the Xth European Conference on Earthquake Engineering Paris, September 6-11. Bisch, Labbe & Pecker Editors, Balkema 1988.

Earthquake spectra, Vol. 24, Number 1, (2008).

Eck, T.V., Stoyanov, T. (1996), "Seismotectonics and Seismic Hazard Modeling for Southern Bulgaria," Tectonophysics, 262, 77-100.

Efron, B. (1979), "Rietz Lecture, Bootstrap Methods—Another Look at the Jackknife," Ann. Statist. 7, 1–26.

Electric Power Research Institute (1987), "Seismic Hazard Methodology for the Central and Eastern United S tates," R eport N P-4726, Electric P ower R esearch Institute, Palo Alto, U.S.A.

ESG98, (1998), "The Effects of Surface Geology on Ground Motion", Proceedings of the ESG'98 International Symposium, A.A. Balkema Publishers, (K.Irikua, K.K.Kudo, H.Okada and T.Sasatani, Editors)

Esteva, L. (1970), "Seismic r isk and s eismic design de cisions," R.J. H ansens, ed., Seismic Design of Nuclear Power Plants, MIT Press, Cambridge, Massachusetts.

Evans, M.D. and H.B. Seed, (1987), "Undrained cyclic triaxial testing of gravels: the effect of membrane compliance," R eport UCB/EERC-87/08, E arthquake E ngineering Research Center, University of California Berkeley, California

Faccioli, E ., (1991), "Seismic a mplification in the pr esence o f ge ological a nd topographic irregularities", Proc. of II International Conference on Recent Advances in Geotechnical E arthquake E ngg. A nd S oil D ynamics, St. L ouis, M issouri, V ol. II, pp 1779-1797.

Faccioli, E, (1996), "Site effects in the Eurocode" 8, Proc. 11th World Conf. Earthq. Eng., Acapulco, CDROM, paper 2043.

Fah, D., T. Noack, P.Kruspan, and E.Ruttener, (1996), "Microzonation of the city of basel (Switzerland) b ased on num erical s imulations and i n-situ measurements", X th World Conf. Earthq. Engng, Acapulco # 727, Elesevier Science Ltd.

Field, E.H., (1994), "Earthquake s ite r esponse e stimation", P h.D. t hesis. C olumbia University, 303 pages.

Field, E.H., S.E.Hough and K.H. Jacob, (1990), "Using microtremors to assess potential earthquake s ite response: a case s tudy i n F lushing M eadows, N ew York C ity", Bull.seism. Soc. Am., 80, 1456 - 1480.

Field, E.H.,and K. H. Jacob, S.E. Hough, (1992), "Earthquake weak motion estimation: a weak motion case study", Bull. Seismo. Soc. Am. 82. 2283-2307.

Field, E.H., and K. H. Jacob, (1993), "The theoretical response of sedimentary layers to ambient seismic noise", Geophysical Res. Letters, 20-24, 2925-2928.

Field, E.H., and K.H. Jacob, (1995), "A comparison and test of various site response estimation t echniques, i neluding t hree t hat a re non r eference-site d ependent", Bull. Seism. Soc. Am., 85, 1127 -1143.

Field, E.H., (1996), "Spectral amplification in a sediment-filled valley exhibiting clear basin-edge-induced Waves", Bull. Seism. Soc. Am., 86-4, 991-1005.

Finn, W.D.Liam, (1991), "Geotechnical engineering aspects of seismic microzonation", Proceedings of the Fourth International Conference on Seismic Zonation, August 25-29, Stanford, California, 1, 199-250.

Finn, W.D.L., R.H. Ledbetter and G. WU, (1994), "Liquefaction in silty soils: Design and a nalysis," G round F ailures unde r S eismic C onditions, G eotechnical S pecial Publication 44, ASCE, New York, pp. 51–76.

Fletcher, J. B., and J. Boatwright (1991), "Source parameters of Loma Prieta aftershocks and wave propagation characteristics a long the San Francisco Peninsula from a joint inversion of digital seismograms", Bull. Seism. Soc. Am. 81, 1783–1812

Frankel, A. (1995), "Mapping Seismic Hazard in the Central and Eastern United States," Seismological Research Letters, Vol. 66, No. 4, pp. 4–8.

Frankel, A., Mueller, C., Barnhard, T., Perkins, D., Leyendecker, E., Dickman, N., Hanson, S., and Hopper, M. (1996), "National seismic hazard maps": documentation June 1996. U.S.Geol. Surv., Open-File Rept. 96-532.

Frankel, A.D., Petersen, M.D., Mueller, C.S., Haller, K.M., Wheeler, R.L., Leyendecker, E.V., Wesson, R.L., Harmsen, S.C., Crammer, C.H., Perkins, D.M. and Rukstales, K.S. (2002), "Documentation for the 2002 Update of the N ational S eismic Hazard Maps", Open-File Report 02-420, United States Geological Survey, Denver, U.S.A.

Fukushima, Y., and T. Tanaka, (1990), "A new attenuation relation for peak horizontal acceleration of strong earthquake ground motion in Japan", Bulletin of the Seismological Society of America, V80, 757-783.

Fursich, F.T., Wilmsen, M., Seyed-Emami, K., Cecca, F., Majidifard, R.,(2005), "The upper Shemshak Formation (Toarcian-Aalenian) of the Eastern Alborz (Iran)": Biota and palaeoenvironments during a transgressive-regressive cycle.Facies 51, 365e384

Gangopadhayay, P. K. and Sen, R. (1968) Evidence of refolding in Delhi System of rocks near Bairawas, Alwar District, Rajasthan, Bull. Geol. Soc. India, 5(1), pp.22-25.

Ganji, V. Gukunski, N., Maher, A. (1997), "Detection of underground obstacles by SASW method—Numerical aspects". *J. Geotech. Geoenviron. Eng.*, 123(3) ASCE, pp 212–219

García, M. J., Gaspar, E.J. M., and Benito B. (2007), "Seismic hazard as sessment of the Province of Murcia (SE S pain): a nalysis of source contribution to hazard," Journal of Seismology, vol. 11(4), 453-471.

Gazetas, G. "analysis of Machine Foundation Vibrations: state-of-the-Art,(1983), IBC "intenational Building Code" International Code Council, 2003).

Ghassemi M.R, G horashi M., M irzaee N., T alebian M., N azari H., H aghipour N, Salamati R. (2004), "Report on the Firuzabad-Kojur earthquake (Baladeh earthquake)

of M ay 28, 2004, G eological S urvey of I ran 2. Geophysics Institute of U niversity of Tehran

Gitterman, Y., Y. Zaslavsky, A. s hapira and V. Shtivelman, (1996), "Empirical s ite response evaluations: case studies in Israel, Soil Dynamics and Earthquake Engineering, 15, 447-463.

Gibowicz, S.J. (1972). The relationship between teleseismic body wave magnitude and local magnitude from New Zealand earthquakes, Bulletin of the Seismological Society of America, Bulletin of the Seismological Society of America, V.62,1-10

Giner J.J., Molina S., and Jauregui P. (2002), "Advantages of using sensitivity analysis in seismic hazard assessment: a case study of sites in Southern and Eastern Spain," Bulletin of the Seismological Society of America, V 92(2), 543—554.

Goes, S. D. B. (1996), "Irregular recurrence of large earthquakes: an analysis of historic and paleoseismic catalogs," J. Geophys. Res. 101, 5739-5749.

Godefroy P, Levret, A., (1985), "Nature and definition of seismic hazard", *In "Genie parasismique"*, V. Davidovici ed., presses ENPC.

G.S.I. (1977), Geology and mineral resources of the states of India. *Geol. Sur. India*, *Misc. Publ., Part-XII*, 30, *Rajasthan*.

GSI (Geological Survey of Iran), (2001). Marzanabad and Chalus, Geological Survey of Iran, Tehran, scale 1:100,000.

GSI (2000). "Seismotectonic A tlas of I ndia and i ts Environs," G eological S urvey of India.

Guagenti-Grandori, e. And Molina, D. (1984), "Semi-Markov processes in seismic risk analysis," Proceedings, International Symposium of Semi-Markov Processes and Their Applications, Brussels.

Gupta, S. K. and Sharda, Y. P. (1996), "A geotechnical assessment of Delhi earthquake of July 28, 1994", Proc. Int. Conf. Dis. Mitin., Madras, v.1, pp. A1/26 - /31.

Gupta, I.D. (2002), "Should Normalized Spectral Shapes be Used for Estimating Site-Specific Design Ground Motion?", Proceedings of the 12th Symposium on Earthquake Engineering, Roorkee, Vol. 1, pp. 168–175.

Gupta, I.D. (2002), "The State of the Art in Seismic Hazard Analysis," ISET Journal of Earthquake Technology, Vol. 39, No. 4, pp. 311–346.

Gupta, I. D. (2005), "Probabilistic S eismic H azard Analysis w ith Uncertainties," Proceedings of the Symposium on Seismic Hazard Analysis and Microzonation, Roorkee, Vol. I, pp. 97–117.

Gupta, I. D. (2006), "Delineation of P robable S eismic S ources i n I ndia a nd Neighbourhood by a Comprehensive Analysis of Seismotectonic C haracteristics of the Region," Soil Dynamics and Earthquake Engineering, Vol. 26, No. 8, pp. 766–790.

Gutenberg, B., and Richter, C.F. (1936), "On Seismic waves (Third paper)", Gerlands Bietraege zur Geophysik, Vol. 47.

Gutenberg, B. a nd R ichter, C.F. (1944), "Frequency of E arthquakes i n C alifornia", Bulletin of the Seismological Society of America, Vol. 34, No. 4, pp. 185–188.

Gutenberg, B. (1945a). "Amplitude of s urface w aves a nd m agnitudes of s hallow earthquakes," Bulletin of the Seismological Society of America, 35,3-12.

Gutenberg, B (1945b), "Amplitude of P, PP, and S and m agnitude of s hallow earthquakes," Bulletin of the Seismological Society of America, 35, 57-69.

Gutenberg B. and R ichter, C.F. (1956a), "Earthquake m agnitude, i ntensity, e nergy and acceleration," Bulletin of the Seismological Society of America, V46, 105-143

Gutenberg B . and R ichter, C .F. (1956b), "Magnitude a nd E nergy of e arthquakes", Amm.Geofis,9, 1-15

Guzzetti F., Carrarra A., Cardinali M. and Reichenbach P., (1999), "Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study". Central Italy. Geomorphology 31, 181-216.

Guzzetti F., Crosta G., Detti R. & Agliardi F., STONE (2002), "A computer program for the three-dimensional simulation of rock-falls. Computers & Geosciences, 28: 9, 2002, 1079-1093

Habermann, R. E. (1987), "Man-made c hanges of S eismicity r ates." Bulletin of the Seismological Society of America, 77: 141-159.

Habermann R . E .,, a nd Creamer, F . (1994), B ulletin of the S eismological S ociety of America, 84, 1551.

Hacket, E. A. (1877), "Note on the Aravalli Series in Northeastern Rajasthan. Rec. Geol. Surv. India, v.10, no.2.

Hagiwara, Y. (1974), "Probability of Earthquake Occurrence as Obtained from a Weibull Distribution Analysis of Crustal Strain", Tectonophysics, Vol. 23, No. 3, pp. 313–318. Hamiltion, W. C. (1964). "Statistics i n P hysical S ciences", t he R onald P ress C o. Newyork pp. 230.

Hanks, T.C. and K anamori, H. (1979), "A M oment Magnitude S cale", J ournal of Geophysical Research, Vol. 84, No. B5, pp. 2348–2350.

Hansen A., F rancks C.A.M., (1991), "Characterization a nd m apping of e arthquake triggered landslides f or s eismic z onation", Proceeding of t he F ourth I nternational Conference on Seismic Zonation, pp. 149-195.

Hartzell, S., A.Leeds., A. Frankel and J. Michael (1996), "Site response for urban Los Angeles us ing a ftershock of the N orthridge E arthquake", Bull. S eism. Soc. A m. 86, S168-S192

Harmsen, S.C. (1977), "Determination of Site amplification in the Los Angeles urban area from inversion of strong motion records", Bull. Seism. Soc. Am., 87, 866-887.

Hartzell, S., A. Leeds., A. Frankel and J. Michael (1996), "Site response for urban Los Angeles us ing a ftershock of the Northridge Earthquake", Bull. S eism. Soc. A m. 86, S168-S192.

Hartzell, S., E. C. ranswick, A. F. rankel, D. C. arver and M. M. eremonte (1997), "Variability of site response in the Los Angeles ur ban area", Bull. Seism. Soc. Am. 87, 1377-1400.

Hartzell. S .(1998), "Variability i n nonl inear s ediment r esponse dur ing t he 1994 Northridge, California earthquake", Bull. Seis. Soc. Am. 88, 1426-1437.

Havskov, J., and Lars Ottemoeller, (2001), Seisan Software Manual, Univ. of Bergen, Norway.

Hawkes, A. G., and Adamopoulos, L. (1973), "Cluster models for earthquakes: regional comparisons," Bull. Int. Statist. Inst. 45 (3), 454-461.

Heron, A. M. (1917) "Geology of Northeastern Rajputana and adjacent districts", Mem. Geol. Surv. India, No. 45(1), pp.1-128.

Heron, A. M. (1953), "The geology of c entral Rajputana. *Mem. Geol. Surv. India*, No.79 (1), 389p.

Herrmann, R. B. (1977), "Analysis of strong motion data from the New Madrid seismic zone: 1975-1976", Dept. Earth and Atmospheric Sciences, Saint Louis University, Saint Louis, Missouri, pp144.

Hofmann, R. B. (1996), "Individual faults can't produce a Gutenberg-Richter earthquake recurrence," Engineering Geology, Volume 43, Issue 1, pp. 5-9.

Housner, G.W., (1947), "Characteristics of S trong M otion E arthquake", Bulletin of Seismological Society of America Vol. 37, No.1, pp 19-31

Housner G.W. ((1965), "Intensity of Earthquake Ground Shaking near the Causative fault", Proc. of Third World Conference on Earthquake Engineering Vol.I, Auckland and Wellington New Zealand pp III-94 to III-115

Howard, R.A. (1971), "Dynamic P robabilistic S ystems V olume II: S emi-Markov and Decision Processes," John Wiley and Sons, Inc.

Huang Huey-Chu and Tseng Yung-Sheng (2002). Characteristics of Soil Liqufaction using H/V of Microtremors in Yuan-Lin area, Taiwan. TAOm,Vol.13,No.3,325-338, September 2002

Hukku, B. M. (1966), "Probable causes of earthquake in the Delhi- Sonipat area" *Proc III Sysmp. Earthquake Engg. Roorkee*, pt. II, pp 75-80.

Ibs-von Seht, M. and Wohlenberg, J. (1999), "Microtremor measurements used to map thickness of soft sediments". Bull. Seism. Soc. Am. 89, 250-259.

Idriss I.M., (1990), "Response of soft soil sites during earthquakes", Proc. H. Bolton Seed Memorial Symposium, pp. 273-290

Idriss, I. M. (1991). "Earthquake ground motions at soft soil sites." Proc., 2nd Int. Conf. on Recent Adv. in Geotech. Earthquake Engrg. and Soil Dyn., Vol. 3, 2265–2271.

Idriss, I. M., and Boulanger, R. W. (2004), "Semi-empirical procedures for evaluating liquefaction potential during earthquakes." Proc., 11th International Conference on Soil Dynamics a nd E arthquake E ngineering, a nd 3r d I nternational C onference on Earthquake Geotechnical Engineering, D. Doolin et.al., eds., Stallion Press, 1, pp 32-56.

Idriss, I. M., a nd B oulanger, R. W. (2005), "Evaluation of L iquefaction P otential, Consequences a nd M itigation" I nvited E xpert Lectures, P roc. I ndian Geotechnical Conference-2005, 17-19 December 2005, Ahmedabad, INDIA, pp 3-25.

Indian Society of Earthquake Technology (1983), "Catalogue of earthquakes in India and neighborhood, From Historical Period upto 1979.

Indian S tandard, I S 18 93 (Part 1):2002, "Indian S tandard, C riteria f or e arthquake resistance design of structures, Fifth Revision, Part-I", Bureau of Indian Standard, New Delhi, 2002.

Indian Meteorological Department (IMD), Govt. of India (2000), "Chamoli Earthquake of March 29, 1999 and its aftershocks", New Delhi.(A consolidated document)

Indian Society of Earthquake Technology (ISET) catalogue (1983)

ISC, Earthquake Catalogue, International Seismological Centre, UK.

Ishihara K., F. T atsuoka a nd S. Y asuda,(1975), "Undrained de formation a nd liquefaction of sand under cyclic stresses," Soils and Foundations, Vol. 15, No. 1, pp. 29–44.

Ishihara, K., (1984), "Post-earthquake failure of a tailings dam due to liquefaction of the pond deposit," Proceedings, International Conference on Case Histories in Geotechnical Engineering, University of Missouri, St. Louis, Vol. 3, pp. 1129–1143.

Ishihara, K., (1985), "Stability of na tural de posits dur ing e arthquakes," P roceedings, 11th International c onference on S oil M echanics and F oundation E ngineering, V ol. 1, pp. 321–376.

Ishihara, K. and Y oshimine, M. (1992), Evaluation of s ettlements in s and de posits following liquefaction during earthquakes. Soils and Foundations. Vol. 32(1): 173-188.

Ishihara, K., (1993), "Liquefaction and flow failure during earthquakes," Geotechnique, Vol. 43, No. 3, pp. 351–415.

Iwasaki T, T okida K, T atsuoka F., W atanabe S., Y asuda S., S ato H., (1982), "Microzonation f or s oil liquefaction using simplified m ethods", Proc. 3rd Int. Earthquake Microzonation conf., Seattle, 3, pp 1319-1330.

Iyengar, R.N. (1999), "Earthquakes in ancient India", Current Science, Vol. 77, pp. 827-829.

Iyengar, R.N. (2000), "Seismic Status of Delhi Megacity", Current Science, Vol. 78, No. 5, 568-574.

Iyengar, R.N., Ghosh, S. (2004), "Microzonation of earthquake hazard in Greater Delhi area", Current Science, Vol. 87, No. 9, 10 November 2004.

Iyengar et a l. (2010), "Development of probabilistic s eismic ha zard m ap of i ndia, technical report of t he Working C ommittee of E xperts (WCE) constituted by t he National Disaster Management Authority, Govt. of India, New Delhi.

Japan Working Group For Tc-4 Committee, (1992), "Seismic zoning on Geotechnical hazards".

Jibson W. R., Edwin L. H. and John A. M., (2000), "A method for producing digital probabilistic seismic landslide hazard maps". Engineering Geology 58, 271–289.

Jones C.B. (1997), "Geographical Information System and Computer Cartography, Addison Wesley Longman, Harlow.

Joshi, G.C., and Sharma, M.L., (2006), "Magnitude Scale conversion relationships for Northern Indian R egion us ing bi variate a nalysis", 13th Symposium on Earthquake Engineering Indian Institute of Technology, RoorkeeDecember 18-20, 2006. Paper 195

Joshi, G. C. and M. L. Sharma(2008), "Uncertainties in estimation of Mmax" Jour. Earth Sciences Systems, Vol. 117, S2, 671-682, 2008

Joyner, W.B., and A.T.F. Chen, (1975), "Calculation of nonlinear ground response in earthquakes," Bull. Seismol. Soc. Am., Vol. 65, pp. 1315–1336.

Joyner, W. B. and Boore, D. M. (1981), "Peak horizontal acceleration and velocity from strong motion records," Bulletin of the Seismological Society of America, 71, 2011–2038.

Joyner, W.B., a nd T.E. F umal (1985), "Predictive m apping of e arthquake g round motion", U.S. Geol. Sur. Profess. Pap. 1360, 203-220. Joyner W.B., B oore D.M., (1988), "Measurement, characterization and prediction of strong gr ound motion", Earthquake E ngineering a nd s oil D ynamics I I, Geotechnical special publication n^o 20, ASCE, pp. 43-102.

Kachroo, K. and Bagchi, J. (1999), Report on the thematic mapping of the rocks of Delhi Supergroup in the National Capital Region Delhi. U npub. G eol. Surv. India Report(f.s. 1998-99).

Kagami, H., C.M.Duke., G.C.Liang and Y. Ohata (1982), "Observation of 1 to 5 second micro tremors and their application to earthquake engineeringIII- A two dimensional study of site effects in the San Fernando Valley". Bull. Seism. Soc. Am. 76, 1801 - 1812.

Kagan, Y. Y., and Knopoff, L. (1981), "Stochastic synthesis of earthquake catalogs," J. Geophys. Res. 86, 2853-2863.

Kagan, Y. Y., and Knopoff, L. (1987). "Random stress and earthquake statistics: time dependence. Geophys," J. Roy. Astr. Soc. 88, 723-731.

Kamble, V. P. and C haudhury, H. M. (1979), "Recent s eismicity around Delhi and neighborhood", Mausam, v.30, pp. 305-312.

Kanai, K., Tanaka, T. and Oada, K., (1954), "On Microtremors", Bull. of Earthquake Res. Institute, Unv. Of Tokyo, Vol 32.

Kanai,K.(1957),"Semi-emperical formula for the seismic characteristics of the ground", Bulletin of the Earthquake Research Institute ,Tokyo University,35,308,325.

Kanai, K., and T. anakai, T., (1961), "On Microtremor V III", B ull. O f E arthquake Research Institute, Univ. of Tokyo, Vol 39.

Karunakaran, C. and RangaRao, A. (1979), "Status of Hydrocarbons in the Himalaya region C ontributions to stratigraphy and s tructure", Proc. H imalayan G eol. S eminar, Pub. Geo. Survey of India, Calcutta, pp.1-66.

Kato, K., K. a ki a nd M. T akemura (1995), "Site am plification from coda w aves; Validation and application to S-wave site r esponse", Bull. S eism. Soc. Am. 85, 467 - 477.

Keefer D .K., (1984), "Landslides c aused by e arthquakes" Geological S ociety of America, bull. 95, pp. 406-421.

Keefer D .K., Wilson R .C., (1989), "Predicting ear thquake-induced l andslides with emphasis on a rid and semi-arid environments", Pub. of the Inland Geological Society, 2, pp. 118-149.

Khattri, K.N. (1992), "Seismic Hazard in Indian region", Current science, 62 (1&2) 109-116.

Kijko, A., and Sellevoll, M.A. (1989), "Estimation of Earthquake Hazard Parameters from Incomplete data Files" Part II: Utilization of Extreme and Complete Catalogues with different Threshold Magnitudes, Bull. Seismol. Soc. Am. 79, 645-654

Kanamori, H., (1977). "The energy release in great earthquakes," J. Geophys. Res. 82, 2981-2987.

Kayen R, Thompson E, Minasiah D, Collins B, Moss ERS, SitarN, Carver G (2002) "Geotechnical reconnaissance of the November3, 2002 M 7.9 Denali fault earthquake", Earthquake Spectra, Special Issue on the M 7.9 Denali Fault Earthquake of 3N ovember 2002, 1–27.

Kebede, F., van Eck, T.(1996), "Probabilistic seismic hazard assessment for the Horn of Africa based on seismotectonic regionalization," Tectonophysics, 270, 221-237.

Khan, P. K., and Chakraborty, P. P. (2007), . "The seismic b value and its correlation with Bouguer gravity anomaly over the Shillong plateau area: a new insight for tectonic implication," Journal of Asian Earth Sciences, 29, 136-147.

Khattri, K. N. (1992)., "Seismic Hazard in Indian Region," CURRENT SCIENCE, Special Issue, Seismology in India - an Overview, 62, 109-116.

Kijko, A., S ellevol, M. A. (1989), "Estimation of e arthquake h azard parameters f rom incomplete da ta f iles, Part I : U tilization of E xtreme and complete c atalogues w ith different threshold magnitudes", Bulletin of the Seismological Society of America, Vol. 40, pp. 1-7.

Kijko, A. a nd G raham, G. (1998), "Parametric-Historic P rocedure for P robabilistic Seismic Hazard Analysis. Part I: E stimation of Maximum R egional M agnitude m_{max} ", Pure and Applied Geophysics, Vol. 152, No. 3, pp. 413–442.

Kijko, A. a nd G raham, G. (1999), "Parametric-Historic' P rocedure f or P robabilistic Seismic Hazard Analysis. Part II: Assessment of Seismic Hazard at Specified Site", Pure and Applied Geophysics, Vol. 154, No. 1, pp. 1–22.

Kijko, A., S ellevoll, M.A. (2001), "Computer p rogram H N2, R ELEASE 2.08, 2001", Seismology Unit, URL: <u>http://www.geoscience.org.za/seismo/index.htm</u>.

Kijko, A. (2002), "Statistical e stimation of maximum r egional e arthquake magnitude M_{max} ", 12th European Conference on Earthquake Engineering, Sep. 9-13, London, Paper Reference FW: 022.

Kiremidjian, A. S., and A nagnos, T. (1984). "Stochastic s lip pr edictable m odel f or earthquake occurrence," Bulletin of the Seismological Society of America, 74, 739-755.

Kobayashi H , M emo M, S pano P F, T rabucchi M (1981), "Identification of / 3adrenergic receptor binding s ites i n r at br ain m icrovessels, us ing [IJiodohydroxybenzylpindolol". J Neurochem 36: 1383-1388.

Kobayashi, H., and Midorikawa, S., (1986), "Study of Site effect in Mexico city using microtremors" Proc. Of National Symposium on Earthquake Engg., Vol. 7, 355-360.

Kobayashi, H., Seo, K., Miclorikawa, A., and Katakoa, S., (1996), "Measurenment of Microtremors in and around Mexico, DF" Part I in Report of Seismic Microzonation studies of the Mexico earthquake September 1995, Tokyo, The g raduate s chool of Nagatsuta Inst. of Technology.

Konrad, J.M., (1988), "Interpretation of flat plate dilatomerer tests in sands in terms of the state parameter," Geotechnique, Vol. 38, No. 2, pp. 263–278.

Konno, K. and Ohmachi, T (1998), "Ground motion characteristics estimated from spectral ratio between horizontal and vertcal components of micrtremors", Bull. Seism. Soc. Am. 88, 228-241.

Kramer, S.L. (1996), Geotechnical Earthquake Engineering. Prentice Hall, New Jersey.

Kramer, S. L. (2003), "Geotechnical E arthquake E ngineering", P earson E ducation Publication, pp. 121.

Krinitzsky, E.L. (2002, "How to O btain E arthquake G round M otions for E ngineering Design", Engineering Geology, Vol. 65, No. 1, pp. 1–16.

Krinitzsky, E. L., (2002), "Epistemic a nd a leatory unc ertainty: a n ew s htick f or probabilistic seismic hazard analysis," Engineering Geology, 66, 157-159.

Krishnaswamy, V. S. (1965), "On the utilization of geothermal stream and prospects of developing the hot springs in the NW Himalayas", Indian Geohydrology, v.1, no. 1.

Kudo, K . (1995), "Practical e stimates of S ite R esponse, State-of-the-art re port", Proceedings of the Fifth International Conference on Seismic Zonation, October 17-19, Nice, France, Ouest Editions Nantes, 3, 1878-1907.

Kulkarni, R. B., Y oungs, R. R., a nd C oppersmith, K. J., (1984), "Assessment of confidence intervals for results of seismic hazard analysis," Proceedings, Eighth World Conference on Earthquake Engineering, vol.1, San Francisco, pp. 263-270.

Kulkarni, R.B., Youngs, R.R. and Coppersmith, K.J. (1984), "Assessment of Confidence Intervals for R esults of S eismic H azard A nalysis," P roceedings of the E ighth W orld Conference on Earthquake Engineering, San Francisco, U.S.A., Vol. 1, pp. 263–270.

Kumar Ashok (2006), IIT Roorkee training noteand personal communication

Kumar, R (2006) "PhD thesis titled Earthquake occurrence in India and its use in seismic hazard e stimation us ing pr obabilistic m ethods," H .N.B. G arhwal U niversity, S rinagar (Garhwal).

Langston, C.A., (1979), "Structure und er M ount R ainier, W ashington, i nferred f rom teleseismic body waves", J.Geophys. Res., 84, 4749-4762.

Lanchet, C., and Bard, P.Y., (1994), "Numerical and Theoretical Investigations on the possibilities and limitations of Nakamura's Technique", J. Phys., Earth 42, 377-397.

Lachet, C., D.Hatzfeld, P.Y. B ard, N. Theodulidis, C. Papaioannou and A.Savvaidis, (1996), "Site E ffects and microzonation in the city of T hessalonki (Greece): Comparision of different approaches", Bull.Seism. Soc.Am. 86, 1692-1703.

Lebrun, B., (1997), "Les E ffects d e s ite :e tude e xperimentale et s imulation de tr os configurations. T hese d e D octorat de l 'Universite J oseph F ourier – Grenoble I, November 27, 1997, 208 pp (in French)

Lermo, J. and F.J. Chavez-Garcia, (1993), "Site effect evaluation using spectral ratios with only one station", Bull.Seismo.Soc.Am 83,1574-1594.

Lermo, L. and F.J. Chavez-Garcia (1993), "Site effect evaluation using spectral ratio with only one station," Bull. Seism. Soc. Am. 84, 1350-1364

Lermo, J. a nd F. J. C havez-Garcia, (1994), "Are m icrotremors us eful i n s ite r esponse evaluation?", Bull. Seism. Soc. Am 83, 1574-1594.

Lermo, J., M.Rodriguez and S.K.Singh, (1998), "Natural Periods of sites in the valley of M exico from m icrotremor m easurements and s trong m otion da ta", Earthquake Spectra, 4-4, 805-814.

Li, Q.S., Zhang, Y.H., Wu, J.R., Lin, J.H. (2004), "Seismic Random Vibration Analysis of Tall Buildings," Journal of Engineering Structures, 26, 1767-1778.

Liad S.S.C., Veneziand D., Whitman R.V., (1988), "Regression models for evaluating liquefaction probability", Journal of Geotechnical Engineering, 144 (4), 389-411

Liao, S. S. C., a nd W hitman, R. V. (1986), 'Catalogue of l iquefaction a nd non-liquefaction oc currences dur ing earthquakes.'' R es. R ep., D ept. of C iv. E ngrg., Massachusetts Institute of Technology, Cambridge, Mass.

Lindholm, C.D., B ungum, H. (2000), "Probabilistic s eismic ha zard: a r eview of the seismological f rame of reference w ith examples f rom N orway," Soil D ynamics and Earthquake Engineering, 20, 27-38.

Lombardi A. M., Akinci, A., Malagnini, L., and Mueller C. S. (2005), "Uncertainty analysis for seismic hazard in Northern and Central Italy," Annals of Geophysics, 48(6), 853-865.

Malgnini, L., R ovelli, A., Hough, S.E. and S eeber L. (1993), "Site a mplification estimates in the Garigliano valley, Central Italy, based on dense array measurements of ambient noise", Bull. Seism. Soc. Am., 83, 1744-1744.

Mandal, H.S., Khan, P.K. and Shukla, A.K. (2012), "Soil responses near Delhi ridge and adjac ent region in Greater Delhi during incidence of a local earthquake", Nat. Hazards, 70(1), pp. 93-118.

Marcuson, W. F., III (1978), "Definition of terms related to liquefaction", J. Geotech. Engrg. Div., ASCE, Vol.104(9), pp 1197–1200.

Margheriti, L., L. Wennerberg and J. Boatwright (1994), " A comparision of coda and S-wave spectral ratios as estimates of site response in the southern San Francisco Bay Area", Bull. Seism. Soc. Am, 84, 1815-1830.

Marshall, P. D. (1970) "Aspects of s pectral differences b etween earthquakes and underground explosions, Geophy". J. R. Astr. Soc., 20, 397-416.

Martin, P.P. and H.B. Seed, (1978), "MASH – A computer program for the nonlinear analysis of vertically propagation s hear waves in hor izontally layered s oil de posits," *Repot No. UCB/EERC-78/23*, Earthquake Engineering Research Centre, University of California, Berkeley, California.

Martin G. R., and L. ew M. (Editors) (1999). "Recommended Procedures for Implementation of D MG S pecial P ublication 117 – Guidelines for Analyzing and Mitigating L iquefaction in C alifornia," S outhern C alifornia E arthquake C enter, University of Southern California, March.

McGuire, R.K. (2004). "Seismic Hazard and Risk Analysis", Monograph MNO-10, Earthquake Engineering Research Institute, Oakland, U.S.A.

McHARG, I. (1969), Design with Nature, National History Press, New York

Mehta, P. N., Hukku, B. M. and Krishnaswamy, V. S. (1970), "Geoseismological studies for the a seismic design of the K ot and Dhauj D am project, G urgaon di strict, Haryana" Proc. Earthq. Engg. Roorkee, IV, pp.411-418.

Middlebrooks, T.A., (1942), "Fort Peck Slide," *Transactions*, ASCE, Vol. 107, pp. 723–764.

Milne, J. (1898). Seismology, 1st Ed., Kegan Paul, Trench, Trube, London...,

Misra, P. S. and Gupta, H. (2000) Seismotectonic Atlas of India and its Environ. Geological Survey of India.

Mittal, H. (2011), Estimation of ground motion in Delhi, Ph.D. Thesis, Indian Institute of Technology, Roorkee, India.

Mittal, H., A. Kumar, and Kamal (2012). Ground motion estimation in Delhi from postulated regional and local earthquakes, J. Seismol., doi: 10.1007/s10950-012-9340-5.

Mittal H, Kumar A, Kumar A (2013a), "Site effects estimation in Delhi from the Indian strong m otion i nstrumentation ne twork", Seismological R esearch Letters 2013;84(1):33–41.

Mittal H, Kamal A. Kumar, S.K. Singh (2013b), "Estimation of site effects in Delhi using standard spectral ratio", Soil Dynamics and Earthquake, 50 (2013) 53–61

Mogami, T. and K. Kubo, (1953), "The behavior of soil during vibration," Proceedings, 3rd International Conference on Soil Mechanics and Foundation Engineering, Zurich, Vol. 1, pp. 152–155.

Molina, S. and Lindholm, C. (2005), "A logic tree extension to the capacity spectrum method de veloped t o e stimate s eismic r isk i n Oslo, N orway," J ournal of E arthquake Engineering, Vol. 9, No. 6, pp. 877–897.

Molnar, P., E itch, T. J. a nd W o, F. T. (1973), "Fault pl ane s olutions of s hallow earthquakes and contemporary tectonics in Asia", Earth Planet S ci. Letters, v.19, pp. 101-112.

Morales Emilio M. MSCE and Mark K. Morales CE,(1995) "UNDERSTANDING LIQUEFACTION"

Mucciarelli, M., (1998), "Reliability and applicability range of the Nakamura's technique using microtremors: an experimental approach", J. Earthquake. Engg.

Mukhopadhyay, S.,Y. Pandey, R. Dharmaraju, P. K. S. Chauhan, P. Singh, and A. Dev (2002). Seismic microzonation of Delhi for groundshakingsite effects, Curr. Sci. 87, 877–881.

Naha, K., Mukhopadhyay, D. K., Mohanty, R., Mitra, S. K. and Biswal, T. K. (1984), " Significance of contrast in the early stages of the structural history of the Delhi and the Pre-Delhi rock groups in the Proterozoic of Rajasthan, Western India", Tectonophysics, v.105, pp.193-206

Naha, K ; Mitra, S. K. and Biswal, T. K. (1987), "Structural history of the Delhi Group around Todharh, Coastal Rajathan", Indian Jour. Geol. (Incorporating the Quart. Jour. Geol. Min. Met. Soc. India), 59, p.126-156.

Nakamura, Y., (1987), "Seismic Vulnerability indices for ground and structure using Microtremors", World Congress on Railway Research, Florence - Italy, 16-19 Nov.1997

Nakamura, Y., (1989), "A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface", Quart.Rept. of R.T.R.I.,Japan, 30, 25-33

Nakamura, Y., (1996), "Real time information systems for hazard mitigation, X World Conference Eathquake Engineering., Acapulco, #2134, Elsevier Science Ltd.

Nakamura, Y; Tsutomu Sato, and Masayuki Nishinaga (1997), "Local Site effect of Kobe based on Microtremor measurement", System and Data Research Co., Ltd., 3-25-3 Fujimidai, Kunitachi-shi, Tokyo, 186-0003, Japan

Naqash J .A., (2008). "Ph.d. Thesis t itled S eismic M icrozonation o f Mega C ities," Department of Earthquake Engineering, IIT, Roorkee.

Narvo m, Sanchez, F.J., Posadas, A.M., Luzen, F.,Enomoto, T.,Masuda, I.,Vidal, F and Sao, K,(1998), "Microtremor observation and its application to seismic microzonation of Almena", S.Spam Press on 11th European conference on earthquake engineering Paris Sept.6-11,Bisch Labbe,Peeker editor, Balkma 1998

Nath, S. K., P. Sengupta, S. K. Srivastav, S. N. Bhattacharya, R. S. Dattatrayam, R. Prakash, and H. V. Gupta (2003). Estimation of S-wave site response in and around Delhi region from weakmotion data, J. Earth Syst. Sci. 112, 441–463.

Nath S.K. and K.K.S. Thingbarijam (2011), "Probabilistic Seismic Hazard Assessment of India", Seismol.Res.Lett. Seismic Hazard Microzonation Manual, Ministry of Earth Sciences.

Nath S. K., and K. K. S. Thingbaijam (2010), "Peak ground motion predictions in India: an appraisal for rock sites", Journal of Seismology DOI 10.1007/s10950-010-9224-5

Novikova, E. I. and Trifunac, M. D. (1994), "Duration of strong ground motion in terms of ear thquake m agnitude, epicentral di stance, site c onditions a nd s ite ge ometry", Earthquake E ngineering & S tructural D ynamics, 2 3: 1023–1043. doi: 10.1002/eqe.4290230907

Ohmachi, T., Y. Nakamura and T. Toshnawa, (1991), "Ground motion characteristics in the San Francisco Bay area detected by micro tremor measurements", In: Proceedings of t he S econd I nternational C onference on R ecent A dvances i n G eotechnical Earthquake E ngineering a nd S oil D ynamics, m arch 11 -15, S t.Louis, M issouri, S.Prakash (Editor), Univ. of Missouri-Rolla, 1643-1648.

Okada, H.T., S. M atsushima a nd E. H idaka (1987), "Comparision of s patial autocorrelation method and frequency-wave number spectral method of estimating the phase ve locity of R ayleigh w aves i n l ong pe riod m icro r emors", G eophys. B ull., Hokkaido Univ, 49, 53-62.

Oldham, T. (1883). "A catalogue of Indian Earthquakes from earliest times to the end of A.D. 1869", Mem. GSI, No. X, 129, 1883.

Omote, S., Srivastava, H.N., Drakopoulos, J., and Tokumitsu, T. (1992), "Investigations of Microtremors in the Akita Plain in Japan", Pure Appl. Geophys., 99, 85-93.

Ordaz, M., A guilar, A., A rboleda, J. (2003), "Crisis 2007", I nstituto de I ngenieria, UNAM, Mexico.

Palmer, G. E., C ashmore, A. & S turtevant, J. (2003), "Candida a lbicans V PS11 is required for vacuole biogenesis and germ tube formation. Eukaryot Cell 2, 411–421.

Panza, G. F., (1985), "Synthetic S eismograms: T he R ayleigh Waves M odal Summation", J.Geophys. 58, 125-145.

Panza, G.F. and Suhadolc, P., (1987), "Complete strong motion synthetics. In Seismic Input M odeling" (bolt, B.A., e d.) (Academic P ress, O rlando 1987), C omputational Techniques 4, 153-204.

Panza, G.F., Vaccari, F., Costa, G., Suhadolc, P., and Fah D. (1996), "Seismic Input Modeling for Zoning and Microzoning", Earthquake Spectra 12, no. 3.

Paroli, S., P. Bormann and C. Milkan, (2001), Journal of Earthquake Engineering, Vol 5, No. 4, 541-564.

Park, C.B., Miller, R.D., and Xia, J., (1999), "Multichannel analysis of surface waves (MASW)", Geophysics, 64, 800-808.

Parvez, I., F. Vaccari, and G. F. Panza (2004). Site-specific microzonationstudy in Delhi metropolitan city by 2-D modeling of SH and P-SV waves, Pure Appl. Geophys. 161, 1165–1185.

Parvez, I., F. Vaccari, and G. F. Panza (2006). Influence of source distanceon site-effect in Delhi city, Curr. Sci. 91, 827–835.

Pearce, J.T. and B aldwin, J.N. (2005), "L iquefaction S usceptibility M apping S T. Louis, M issouri a nd I llinois- Final T echnical R eport", p ublished i n web.er.usgs.gov/reports/ bstract/2003/cu/03HQGR0029.pdf.

Phillips, S. W., a nd K. Aki, (1986). "Site a mplification of c oda w aves f rom loc al earthquakes in Central California", Bull. Seism. Soc. Am. 76, 627-648.

Pierepiekarz M.R., Ballantyne D.B., Hamberger R.O., (2001) "Damagereport from Seattle", Civil Engineering, American Society of CivilEngineering, 71, 78–83.

Poulos S.J., (1981), "The s teady s tate of d eformation," J ournal of t he G eotechnical engineering Division, ASCE. Vol. 107, No. GT5, pp. 553–562.

Prakash, R.;R.K. Singh; A. K.; Shukla;D.Singh, B.S.Rana, J.S.Jariyal, A.K.Bhatnagar and S.Bali. (2011), "Intensity and isoseismal map of 25th November 2007 Delhi earthquake" Mausam,62,3(July 2011),417-424

Prasad, M. a nd A wasthi, S. C. (1992, "A not e on the s edimentary s tructures in the metasediments in southern parts of Gurgaon and Faridabad districts of Haryana", Rec. Geol. Surv. India, 115, (7 and 8), pp.28-31.

Raivermen, V., K unte, S. a nd M ukherjee, A. (1983), "Basic G eometry, Cenozoic sediment a nd hydr ocarbon pr ospects i n N W H imalayas a nd I ndo-Gangetic plains Petroleum", Asia Journal., Dehradun, v.6, pp.67-104.

Rajendran Kusala, , C. P. Rajendran, Mahesh Thakkar and Martitia P. Tuttle, (2001) "The 2001 K utch (Bhuj) e arthquake: C oseismic s urface f eatures a nd t heir significance"Current Science, vol. 80, No. 11, 10 June 2001

Rao, K.S and N eelima Satyam D (2005), "Seismic M icrozonation Studies for D elhi Region," Symposium on S eismic Hazard Analysis and M icrozonation, S eptember 23-24, Roorkee, pp 213-234.

Rao.K.S.and M ohanti, W.K., (2001), "The B huj E arthquake a nd l essons f rom t he damages", IGS News, vol33, No.2, pp3-10

Reasenberg, P. A. (1985), "Second-order moment of central California seismicity, 1969-1982," J.Geophys. Res. 90, 5479-5495.

Reiter, L . (1990), "Earthquake H azard A nalysis: I ssues a nd I nsights", C olumbia University Press, New York, U.S.A.

Riepl, J., P.Y.Bard, D. Hatzfeld, C.Papaioannou and S. Nechtschein, (1998), "Detailed evaluation of Site Response estimation methods across and along the sedimentary valley of Volvi (EURO-SEISTEST)", Bull. Seism. Soc.Am., 88-2, 488-502.

Rogers, A. M., J. C. T insley and R. D.Borcherdt (1985), "Predicting r elative gr ound response", USGS., Profess. Pap. 1360, 221-248.

Roscoe, K.H. and H.B. Pooroshasb, (1963), "A fundamental principal of similarity in model tests for earth pressure problems," Proceedings, 2nd Asian Regional Conference on Soil Mechanics, Tokyo, Vol. 1, pp. 134–140.

Rothe, J.P., (1969). Seismicity of the earth 1953-65, UNESCO, Paris

Rothaus R.M., Reinhardt E, Noller J. (2004), "Regional consideration of coastline change, tsunami damage and recovery along thesouthern coast of the Bay of Izmit", Natural Hazards, 31, 233–52.

R. W. Boulanger, and I. M. Idriss, (2004), "State normalization of penetration resistance and the effect of overburden stress on liquefaction resistance," Proc., 11th International

Conf. on Soil Dynamics and Earthquake Engineering and 3rd International Conference on Earthquake Geotechnical Engineering, Univ. of California, Berkeley, CA, 2004

Roy, A. B. (1988), "Introduction on Precambrian of the Aravalli mountains, Rajasthan, India", (ed. A. B. Roy), Geol. Soc. India, Mem. No.7, Bangalore.

Ruizhi W en, D acheng Shi, Y efei R en (2008), "Site C lassification based Geological genesis a nd i ts a pplication", 14th W orld Conference on E arthquake E ngineering October 12-17, 2008, Beijing, China

Sabetta, F., Lucantoni, A., Bungum, H. and Bommer, J.J. (2005), "Sensitivity of PSHA Results to Ground Motion Prediction Relations and Logic-Tree Weights", Soil Dynamics and Earthquake Engineering, Vol. 25, No. 4, pp. 317–329.

Sadigh, K., C.-Y. Chang, F. Makdisi, J.A. Egan, and R.R. Youngs (1997), "Attenuation Relationships for Shallow Crustal Earthquakes Based on California Strong Motion Data" Seismological Research Letters, Vol.68, No.1, PP.180-189.

Sarkar, S. N. (1980), "Precambrian stratigraphy and geochronology of Peninsular India": A review. Ind. Jour. Earth Sci., 7, pp.12-26.

Saaty, T. (1980), The Analytical Hierarchy Process (New York: McGraw-Hill)

Saaty, T., (1990), The analytic hierarchy process: planning, priority setting, resource allocation, RWS Publications, Pittsburgh (1990) 502 pp.

Schell, A. B., Eriksson, L.G., Murphy, B.E., Boylan, D., Kiling, M. and Gregory, J.L. (1985), "Application of S eismotectonic Z oning t o R egional S ite S creening, Characterization and s election", A ssociation of Engineering G eologists Abstracts and Program 74.

Scherbaum, F., Bommer, J.J., Bungum, H., Cotton, F. and Abrahamson, N.A. (2005), "Composite Ground-Motion Models and Logic Trees: Methodology, Sensitivities, and Uncertainties", Bulletin of the Seismological Society of America, Vol. 95, No. 5, pp. 1575–1593.

Seed, H. B., and I. M. I driss, (1971), "Simplified procedure for evaluating soil liquefaction potential," *Journal of the Soil Mechanics and Foundation Division, ASCE*, Vol.97, No.9, pp 1249-1274.

Seed, H.B., and I.M., I driss, (1982), "Ground Motions and S oil L iquefaction during Earthquakes, M onogr.5", E arthquake E ngineering R esearch I nstitute, University of California, Berkeley

Seed H.B. "Earthquake resistant design of earth dams," Proc., Symposium on S eismic Design of Embankments and Caverns, Pennsylvania, ASCE, N.Y., PP 41-64, 1983.

Seed, H. B., Idriss, I. M., and Arango, I. (1983), "Evaluation of Liquefaction potential Using Field Performance Data," *Journal of Geotechnical Engineering*, Vol. 109, No. 3, March, pp 458-482.

Seed H .B, K .Tokimatsu , L .F.Harder, Jr., and R.Chung, (1985), "Influence of S PT Procedures i n s oil l iquefaction resistance e valuation.", J.GeotechnicalEngineering, ASCE, 111(12), 1425-1445, 1985

Seekins, L.C., L. Wennerberg, L.Margheriti and H.P. Liu, (1996), "Site amplification at five locations in San Francisco, California: a comparision of S waves, codas and micro tremors", Bull. Seism. Soc. Am., 86-2. 627-635.

Sett, D. N. and Hazra, P. C. (1965), "A geohydrological study of the rise of the water table in the New Delhi area", Bull. Geol. Sur. India, Series-B,

Sharma, M. L. (1998), "Attenuation r elationship f or e stimation of pe ak g round horizontal a cceleration using da ta from s trong-motion a rrays i n I ndia", B ull. Seism. Soc. Am., 88(4), 1063-1069.

Sharma, M. L. and D. Shanker (2001), "Estimation of seismic hazard parameters for the Himalayas and its vicinity from mix data files" ISET Journal of Earthquake Technology Vol. 38, No.2-4, 93-102, 2001

Sharma, M. L., Wason, H. R. and Dimri, R. (2003), "Seismic Zonation of the Delhi region for Bedrock Ground Motion. J. Pure Appl. Geophys., v. 160, pp.2381-2398.

Sharma et al (Pure Appl. Geophys. 160 (2003) 2381–2398 0033 – 4553/03/122381 – 18) Engineering Geology and Groundwater, 17, pp.1-12.

Sharma M . L . a nd H . R . W as on (2004), "Estimation of s eismic ha zard and seismic zonation at be d r ock l evel for D elhi r egion, India, 13WCEE, V ancouver, A ug. 1 - 6, 2004," paper 2043, p1-13.

Sharma, M. L. (2005), "A new empirical a ttenuation r elationship f or pe ak gr ound horizontal acceleration for Himalayan region using Indian and world wide data" Jour. of Geophysics, Vol 26, No. 3, 151-158, 2005

Sharma, M. L. a nd S hipra M alik (2006), "Probabilistic s eismic ha zard analysis and estimation of s pectral s trong gr ound m otion on Bed r ock in N orth E ast I ndia", 4thInt. Conf. Earthquake Engineering, Taipei, Taiwan, Oct 12-13, 2006.

Sharma, M. L. a nd H. B ungum (2006), "News trong gr ound-motion s pectral acceleration relations for the Himalayan region", Proc., 1st European on Conf. Earthq. Eng. and Seism., Geneva, 3-8 September 2006, Paper No 1459, 8 pp.

Sharma, M . L . J . D ouglas, H . B ungum a nd J . K otadia (2009), "Ground m otion predicting equations on data from the Himalayan and Zagros regions", Jour. Earthquake Engineering, 13:8, 1191-1210, 2009

Sharifikia .M., (2007), "RS & GIS Application in Geo-hazard – A case s tudy part of c entral A lborz-Iran", PhD thesis submitted in Geology de partment - university of Delhi- Delhi – India.

Shi, Y., a nd B.A. B olt (1982), . "The s tandard e rror of t he m agnitude-frequency b - value," Bulletin of the Seismological Society of America, 72, 1667-1687.

Shibata, T. and Teparaksa, V. (1988), "Evaluation of liquefaction potentials of soils using cone penetrations tests". Soil and Foundations, 28(2), 49-60.

Shinozuka, M and D eodaties, G (1988), "Stochastic process models for earthquake ground motion," journal of probabilistic Engineering Mechanics, Vol. 3. No. 3pp.187-221)

Shukla, A. K.; Prakash, Rajesh; Shukla H. P. and Bhattacharya, S. N.(2001), "Digital Seismic V SAT based telemetry system for National Capital Region: A Perspective", (2001) proc. 32nd IETE Mid-Term sym, pp 10-17, 2001.

Shukla, A. K.; Prakash, Rajesh; Shukla H. P. Gupta. H. V; Bhattacharya, S. N. and Srivastava, S. K. (2002), "Delhi Seismic Telemetry Network and Analysis of digital Waveform da ta c ollected t hrough t his ne twork", P roc.12th Symp. E arthquake Engineering, IIT Roorkee, 2002, pp105-113.

Shukla, A. K.; Prakash, R.; Singh, R. K.; Mishra, P. S; and B hatnagar, A. K., (2007) "Seismotectonics implications of D elhi r egion t hroughfault pl ane s olutions of some recent earthquakes". *Curr. Sci.*, 2007,93, 1848–1853.

Singh S.K., Mohanty WK, Bansal BK, Roonwal GS (2002). 'Ground motion in Delhi from f uture l arge/great ear thquakes i n the cent rals eismic gap of t he Himalayanarc'.Bulletin of the Seismological Society of America 2002; 92:555–69

Singh, S. K. *et al.*, (2010), "Delhi e arthquake of 25 N ovember 20 07 (*Mw* 4.1): Implications for seismic hazard". *Curr. Sci.*, 2010, 99, 939–947 Sitharam T. G. and Sreevalsa Kolathayar. (2012), "Probabilistic Evaluation of Seismic Hazard in India: Comparison of Different Methodologies" T15 WCEE, USBOR,2012

Skempton; a nd Skempton, A. W. (1986), "Standard Penetration Test Procedures." Geotechnique, ol.36,No.3, pp 425-447

Sladen, J.A., (1985), "Problems with interpretation of sand state from cone penetration test," Geotechnique, Vol. 39, No. 2, pp. 323–332.

Srinivasan, S. a nd K har, B. M. (1995), "Status of hydr ocarbon e xploration i n N W Himalayan and Foredeep- Contribution to stratigraphy structure", Symp. Rec. Adves. in Geol, Studies of NW Him. & Foredeep, Geol. Surv. Ind. Spl. Publ., no. 21, v.1, pp. 295-405.

Srikantia S.V. and Bhargava O.N. (1998), Geological Society of India, Bangalore.

Srivastava, L. S. and Somayajulu, J. G. (1966), "The seismicity of area around Delhi", *Proc. III symposiam on Earthquake Engg., Univ. of Roorkee*, pp.417-422.

Srivastava, K. N., Jalote, P. M. and Mehta, P. (1974), Report on Geotechnical project, Delhi. Unpub. Geol. Surv. India Report.

Srivastava, A. K., S inha, K. K., D asgupta, G., J alote, P. M., S rivastava, M. C. a nd Gupta, S. K. (1980), Report on Geotechnical project, Delhi. Unpub. Geol. Surv. India Report.

Srivastav,S.K.; S. N.Bhattacharya;R.S.Dattatrayam; A.K.shukla;G.Suresh; D al s ingh; Rajesh prakash; P.R.Baidya; J.S.Kondal; Hargian s ingh; A.K.Ghose; J.L.Gautam; and B.S.Rana (2001), 'Apriliminry Analysis of Chamoli (West U.P.) Earthquake of March 199" R esearch H ighlights i n E arthSystem S cience, D ST's S pl.Vol.2 on S eismicity (Ed.O.P.Varma), Published by Ind.Geol.Cong.,2001,pp.109-121.

Steidl, J.H., A. Tumarkin and R.J. Archuleta (1996" What is a r eference site?", Bull. Seism. Soc. Am. 86, 1733-1748.

Stepp, J.C. (1972), "Analysis of Completeness of the Earthquake Sample in the Puget Sound Area and Its Effect on Statistical Estimates of Earthquake Hazard", Proceedings of the International Conference on Microzonation, Seattle, U.S.A., Vol. 2, pp. 897–910. Stirling, M.W., McVerry, G.H., Berryman, K.R. (2002). "A new seismic hazard model for New Zealand," Bulletin of the Seismological Society of America, 92-5, 1878-1903.

Stokoe II, K.H., Wright, G.W., James, A.B., and Jose, M.R., (1994), "Characterization of ge otechnical s ites by S ASW m ethod, i n G eophysical c haracterization of s ites,", ISSMFE T echnical C ommittee #10, e dited by R .D. W oods, O xford P ublishers, N ew Delhi.

Su, F., and K. Aki (1995), "Site amplification factors in central and Southern California determined from Coda waves", Bull. Seism. Soc. Am., 85, 452-466.

Suresh, G.; R. K. Singh; Rajesh Prakash; D.Singh; J.S.Jaryal; B.S.Rana; A. K. Shukla (2005), "Site r esponse s tudy us ing m icro t remor a nd l ocal e arthquake da ta i n seismically active region of Jind (Haryana) (2005)", Proc. Seismic Hazard Analysis and Microzonation, IITRoorkee 303-318.

Tandon, A. N. and Chatterjee, S. N. (1968), "Seismicity studies in India", Indian Jour. Meteor. Geophy., v.19, pp. 273-280.

Tezcan, S.S., Kaya, I.E., Bal, E. and Ozdemir, Z (2002), "Seismic Amplification at Avcilar Istanbul', Eng. Struct. 24:5, 2002 pp. 661-667.

Theodullidis, N., P.Y.Bard, (1995), "(H/V) spectral ratio and geological conditions: an analysis of s trong m otion data from Greece and T aiwan" (SMART-I), SoilDyn and Earthq. Engg, 14, 177-197.

Theodulidis, N., L ekidis, V., M argaris, B., P apazachos, C., P apaioannou, C., Dimitriu, P.(1997), "Seismic Hazard Assessment and design spectra for theKozani-Grevena Region (Greece) after the earthquake of May 13, 1995," J. Geodynamics., 26, 375-391.

Thussu, J. L. (2001) Origin of Quaternary basin of Sohna vally, southeastern Haryana. Geol. Soc. India, v.58, pp.457-464.

Toshinawa, T., J. J. t aber a nd J. J. B errill, (1997), "Distribution of gr ound m otion intensity inferred from questionnaire survey recordings, and microtremor measurements – a c ase s tudy i n C hristchurch, N ew Z ealand, dur ing t he 1994 A rthurs P ass Earthquake", Bull. Seism. Soc. Am. 87-2, 356-369.

Triantafyllidis, P., H atzidimitriou, P.M. and S uhadolc, P., (2001), "1-D T heoretical Modeling for site effect estimations in Thessaloniki: Comparison with Observations", Pure appl. Geophys. 158, 2333-2347.

Tsapanos, M.T., (2003). "A seismic hazard scenario for the main cities of Crete Island, Greece," Geophys. J. Int., 153, 403-408.

Tsujiura, M, (1978), "Spectral analysis of coda waves from Local earthquakes", Bull. Earthquake. Res. Inst. Tokyo Univ., 53, 1-48.

Udwadia, F.E. and M.D. Trifunac (1973), "Comparision of earthquake and microtremor ground motions in El Centro, California", Bull. Seism. Soc. Am., 63, 1227-1253.

Udwadia, F.E. and M.D. Trifunac., (1978), "Studies in earthquake motions and micro tremor pr ocess", Proc. I II nternational C onf. O n M icrozonation, S an Francisco, California.

Vaccari, F., Gregersen, S., Furlan, M., and Panza, G.F.,(1989)," Synthetic Seismograms in laterally H eterogeneous, A nelastic M edia by Modal S ummation of P-SV Waves", Geophys. J.Int. 99, 285-295

Vaid, Y.P., E.K.F. Chung and R.H. Kuerbis, (1990), "Stress path and steady state," Canadian Geotechnical Journals, Vol. 27, No. 1, pp. 1–7.

Vaid Y .P. a nd J . T homas, (1995), "Liquefaction a nd pos t-liquefaction be havior o f sand," Journal of Geotechnical Engineering, ASCE, Vol. 121, No. 2, p. 163–73.

Valdiya, K. S. (1976), "Himalayan transverse faults and folds and their parallelism with subsurface structures of north Indian plains", *Tectonophysics*, v.32, pp.353-386.

Varnes D. J.: Slope movement types and processes. In: Schuster R. L. & Krizek R. J. Ed., (1978), "Landslides, a nalysis and c ontrol", Transportation R esearch B oard S p. Rep. No. 176, Nat. Acad. oi Sciences, pp. 11–33, 1978.

Veneziano, D., Cornell, C.A., O'hara, T. (1984). "Historic method for, Seismic Hazard Analysis," Elect. Power Res. Inst., Report, NP_3438, Palo Alto.

Verma, R. K. Roonwal, G. S., Kamble, V. P., Mohanty, W. K., Dutta, U, Gupta, Y., Chatterjee, D., Kumar N., and Chauhan. P. K. S. (1995), "Seismicity of Delhi and its surrounding region", J. Himalayan Geology, v.(I), pp.75-82.

Wiemer, S. (2001). "A software package to analyze seismicity: ZMAP," Seism.Res. Lett. 72, 373–382.

Wilson, R.C. and Keefer, D.K., (1985), "Predictiong areal limits of earthquake induced landsliding". US Geological Survey Prof. Paper 1360, pp. 317-347

Wood, H.D., (1933), "Preliminary report on the Long Beach earthquake", Bull. Seism. Soc. Am. 23, 42-56.

Wood. H. D. (1908), "Distribution of a pparent i ntensity in San F rancisco i n t he California earthquake of April 18, 1906", report of the State Earthquake Investigation Commission, Carnegie Institute, Washington, D.C., Publ. 87, 220-245.

Wong, R.T., H.B. Seed and C.K. Chan, (1975), "Liquefaction of gravelly soil under cyclic loading conditions," Journal of the Geotechnical Engineering Division, A SCE, Vol. 101, No. GT6, pp. 571–583.

Wong W.S. (1979), "Some f indings in S oil l iquefaction", Water C onservency and Hydroelectric Power Scientific Research Institute, Beijing.

Wong, W., (1984)," Earthquake damages to earth dams and levees in relation to soil liquefaction and weakness in soft clays," Proceedings, International Conference on Case Histories in Geotechnical Engineering, Vol. 1, pp. 511–521.

WWSSN, Earthquake Catalogue, Worldwide Standardized Seismograph Network.

Xia, J., Miller, R.D., and Park, C.B. (1999), "Estimation of near-surface s hear-wave velocity by inversion of Rayleigh wave," *Geophysics*, Vol.64(3), pp 691-700.

Yamananka, H., M. Dravinski and H. Kagami (1993), "Continuous measurements of microtremors on s ediments and basements in L os Angeles, C alifornia", B ull. Seism. Soc. Am 83, 1595-1609.

Yegian, M.K., V.G. Gharaman and R.N. H arutiunyan, (1994), "Liquefaction and embankment failure case histories, 1988 Armenai earthquake," Journal of Geotechnical Engineering, ASCE, Vol. 120, No. 3, pp. 581–596.

Yilmaz, N., (2005), "Design, realization and applications of a web-based mobile robot system", PhD T hesis. I nstitute of N atural a nd A pplied S ciences. K onya, S elcuk University (in Turkish).

Yilmaz, I., and Bagci, A.(2006), "Soil liquefaction susceptibility and hazard mapping in the residential area of Kutahya (Turkey)", Environ Geol, Vol. 49, pp 708–719.

Yin, K.L., and Yan, T.z., (1988), "Statistical prediction model for slope instability of metamorphosed rocks", Proceeding ao 5th Int. Symp. On landslide, Lausanne, V,2, 1269-1272

Youd, T.L. and S.N. Hoose, (1977), "Liquefaction susceptibility and geologic setting," Proceedings, 6th World Conference on Earthquake Engineering, New Delhi, Vol. 3, pp. 2189–2194.

Youd T.L., P erkins D.M., (1978), "Mapping of l iquefaction i nduced gr ound f ailure potential", Journal of the G eotechnical Engineering D ivision, A SCE 140 (GT4), pp. 433-446.

Youd, T.L., (1984a), "Recurrence of liquefaction at the same site," Proceedings, 8th World Conference on Earthquake Engineering, Vol. 3, pp. 231–238.

Youd, T.L., Harp, E.L., Keefer, D.K., and Wilson, R.C. (1985), "TheBorahPeak, Idaho earthquake of October 28, 1983 --Liquefaction." Earthquake spectra, 2(1), p71-89.

Youd T.L., Perkins D.M., (1987), "Mapping of liquefaction severity index." Journal of Geotechnical Engineering, ASCE 113 (11), pp. 1374-1392.

Youd, T. L., (1991), "Mapping of e arthquake-induced l iquefaction f or s eismic zonation," Proceedings, 4th International Conference on S eismic Zonation, Earthquake Engineering Research Institute, Stanford University, Vol. 1, pp. 111–147.

Youd, T. L., and Noble, S. K. (1997), 'Magnitude scaling factors.' Proc., N CEER Workshop on Evaluation of Liquefaction Resistance of Soils, Nat. Ctr. for Earthquake Engrg. Res., State Univ. of New York at Buffalo, pp 149–165.

Youd, T.L., Idriss, I.M., Andrus, R.D., Arango, I., Castro, G., Christian, J.T., Dobry, R., Liam Finn, W.D., Harder Jr., L.H., Hynes, M.E., Ishihara, K., Koester, J.P., Liao, S.S.C, Marcuson, W.F., Marting, G.R., Mitchell, J.K., Moriwaki, Y., Power, M.S., Robertson, P.K., Seed, R.B, And Stokoe, K.H. (2001), "Liquefaction Resistance of Soils: Summary from t he 1996 N CEER a nd 1998" N CEER/NSF W orkshops on E valuation of Liquefaction Resistance of S oils", J ournal of G eotechnical a nd G eoenvironmental Engineering , pp.817–833, (2001).

Yu, H.S., (1994), "S tate pa rameter f rom s elf-boring pr essuremeter t ests i n s and," Journal of Geotechnical Engineering, Vol. 120, No. 12, pp. 2118–2135.

Yu M.S, Shieh B-C, Chung YT (2000), "Liquefaction induced byChi-Chi earthquake on reclaimed land in central Taiwan", Sino-Geotech, 77, 39–50

Wang C.Y., (2007), "Liquefaction beyond the near field" SeismologicalResearch Letters, 78, 512–7.

Wang, L., Wang, Y., Wang, J., Li, L., Yuan, Z. (2004). The Liquefaction Potential of Loess in China and its Prevention. 13th World Conference On Earthquake Engineering, Vancouver, B.C., Canada, 13p.

WhitmanRobert V. (1987), "Liquefaction –The state of Knowledge" keynote address at the Pacific Conference on Earthquake Engineering, Wairakei, 5-8 August 1987.

Wyss, M ax (2005), "Human L oss E xpected i n H imalayan E arthquakes", Natural Hazards, 2005, v. 34, pp. 305-314.

Zerger, A. (2002), "Examining GIS decision utility for natural hazard risk modeling", Environmental Modelling & Software, Volume 17, Issue 3, Pages 287-29. Zhang, S. X., L. S. C. han, and X ia, J. (2004), "The s election of f ield a equisition parameters f or di spersion images from multichannel s urface w ave da ta." *Pure and Applied Geophysics*, 161, pp 185-201.

MAP-1

Map-2

Map-3

sample map of one toposheet

Map -5: Seismo-Tectonic maps (large environs caused by graticules Long 74⁰ – 81⁰ & Lat 25⁰ - 33⁰) generated from Seismotectonic Atlas of GSI

Map -6: Seismo-Tectonic maps (closer domain around Delhi bound Long 76⁰ – 78⁰ & Lat 28⁰- 3⁰) generated from Seismotectonic Atlas of GSI

Map7: Bedrock depth map (Generated by CGWB)

..

"

Map 8: The post monsoon season water table map of 2010 (CGWB)

Map-9

**

"

Map 11: PGA map at engineering bedrock for 2% probability of exceedance in 50 years for 5% damping

Map 12: PGA map at engineering bedrock for 10% probability of exceedance in 50 years for 5% damping

Map-13 A documentation map showing locations of all geotechnical/geophysical investigation undertaken for the study of Seismic Hazard Microzonation of NCT Delhi on 1:10000 scale

Map-16 M 16

Map-17: Shearwave velocity map of layer 0-3meter below ground level.

Map-18: Shearwave velocity map of layer 3-6meter below ground level.

Map 19

Map-20

Map-21

Map-24

Map -26

Map-27

Map-29

Map-31

Map - 35

Map -37

Map – 38

Map -40

 Table 7.2: 30 meter depth profile of shear wave velocity (m/sec) at 25 sites based on Down Hole Test (DHT) and Cross Hole Test (CHT) with 4 meter and 8 meter spacing DHT, CHT(4m), CHT (8m) and CHT(Avg) are shear wave velocities in m/sec computed by these methods at different depth intervals.

	BH/SH: 4	BH/SH: 43/31 Rohini			BH/SH:	ln/14 Baw	ana Khanj	awala				
		1		1				1	BH/SH: 1			
Depth	DUT	CHT	CHT	CHT	DUT	CHT	CHT	CHT	DUT	CHT	CHT	CHT
(m)	DHT	(4m)	(8m)	(Avg)	DHT	(4m)	(8m)	(Avg)	DHT	(4m)	(8m)	(Avg)
1.5	118.67	183.57	212.33	197.95	192.34	195.12	195.12	195.12	162.03	231.21	173.91	202.56
3	129.53	205.41	212.33	208.87	155.76	169.49	181.82	175.655	171.07	215.05	187.35	201.20
4.5	150.52	245.16	253.27	249.22	151.64	228.57	202.02	215.295	200.31	289.86	181.00	235.43
6	168.09	256.76	317.62	287.19	206.59	204.08	231.21	217.645	222.86	275.86	212.20	244.03
7.5	188.05	301.59	357.14	329.37	220.78	207.25	271.19	239.22	233.46	300.75	273.04	286.90
9	202.24	314.05	374.4	344.23	254.52	281.69	327.87	304.78	240.17	300.75	285.71	293.23
10.5	212	324.79	397.44	361.12	274.82	298.51	350.88	324.695	266.35	300.75	296.30	298.53
12	230.82	365.38	379.9	372.64	260.82	285.71	360.36	323.035	283.70	285.71	293.04	289.38
13.5	239.46	283.58	363.85	323.72	273.4	277.78	398.01	337.895	298.05	263.16	307.69	285.43
15	248.39	304	329.79	316.90	275.18	275.86	370.37	323.115	293.05	294.12	347.83	320.98
16.5	261.2	314.05	327	320.53	279.28	303.03	346.32	324.675	295.26	275.86	366.97	321.42
18	272.77	273.38	342.92	308.15	287.68	327.87	300.75	314.31	296.24	317.46	307.69	312.58
19.5	288.49	273.38	389.45	331.42	303.51	350.88	326.53	338.705	298.48	314.96	294.12	304.54
21	282.77	368.93	387.5	378.22	285.45	322.58	396.04	359.31	301.75	289.86	318.73	304.30
22.5	296.4	336.28	376.21	356.25	302.25	380.95	336.13	358.54	305.51	360.36	350.88	355.62
24	298.54	408.6	469.7	439.15	307.2	449.44	379.15	414.295	308.90	336.13	416.67	376.40
25.5	305.83	493.51	506.54	500.03	332.6	373.83	353.98	363.905	308.23	487.80	481.93	484.87
27	305.99	463.41	508.21	485.81	311.89	425.53	373.83	399.68	307.31	408.16	454.55	431.36
28.5	312.14	469.14	509.87	489.51	311.47	470.59	441.99	456.29	311.16	404.04	434.78	419.41
30	315.27	463.41	513.25	488.33	316.3	533.33	547.95	540.64	320.06		470.59	

Table 7.2 continue

					BH/SH:	11n/38, Bal	khtiyarpur	,	BH/SH: 1	BH/SH: 5	7/41, Law	rence
	BH/SH: 3	3n/29, Hol	lambi Kh	urd					road, Ka	nhaiya na	gar	
Depth		CHT	CHT	CHT		CHT	CHT	CHT		CHT	Depth	CHT
(m)	DHT	(4m)	(8m)	(Avg)	DHT	(4m)	(8m)	(Avg)	DHT	(8m)	(m)	(4m)
1.5	159.72	180.18	207.79	193.99	148.41	176.21	229.23	202.72	190.57	209.42	1.00	268.46
3	169.71	184.33	208.33	196.33	160.10	204.08	251.57	227.83	196.42	266.67	2.50	279.72
4.5	160.01	183.49	181.82	182.66	179.68	198.02	248.45	223.24	251.55	297.40	4.00	320
6	176.53	225.99	199.50	212.75	184.80	204.08	249.22	226.65	244.82	297.40	5.50	298.51
7.5	201.94	207.25	233.92	220.59	204.50	192.31	281.69	237.00	254.82	297.40	7.00	344.83

9	198.89	289.86	352.42	321.14	227.50	187.79	254.78	221.29	261.35	379.15	9.50	384.62
10.5	208.00	336.13	308.88	322.51	230.87	298.51	295.20	296.86	281.45	353.98	11.00	380.95
12	219.31	163.27	349.34	256.31	266.58	325.20	336.13	330.67	298.78	306.51	12.50	250
13.5	230.49	380.95	333.33	357.14	291.14	333.33	279.72	306.53	280.51	295.20	14.00	336.13
15	251.60	373.83	400.00	386.92	304.12	330.58	333.33	331.96	280.68	305.34	15.50	353.98
16.5	274.93	360.36	388.35	374.36	304.36	272.11	343.35	307.73	297.35	317.46	17.00	298.51
18	268.36	392.16	410.26	401.21	308.25	353.98	361.99	357.99	294.33	317.46	21.00	317.46
19.5	263.06	388.35	414.51	401.43	311.19	370.37	414.51	392.44	300.75	331.95	22.50	325.2
21	259.97	251.57	412.37	331.97	313.34	380.95	434.78	407.87	319.96	346.32	24.00	325.2
22.5	275.47	366.97	457.14	412.06	313.52	434.78	476.19	455.49	316.14	330.58	25.50	325.2
24	282.56	416.67	444.44	430.56	314.52	416.67	390.24	403.46	313.30	340.43	27.00	333.33
25.5	288.49	388.35	380.95	384.65	317.38	336.13	360.36	348.25	307.50	352.42	28.50	322.58
27	295.93	416.67	536.91	476.79	317.73	338.98	384.62	361.80	322.26	327.87	29.50	336.13
28.5	298.52	421.05	425.53	423.29	319.48	370.37	334.73	352.55	318.06	330.58		
30	302.71	408.16	437.16	422.66	320.06	388.35	476.19	432.27	323.15	316.21		

Table 7.2 continue

		49/67; Flo	od Plain o	pp		23/61; Jav	vaharlal N	lehru		11n/39; J	J Colony,	
	Akshard				Stadium				Swaroop			
Depth (m)	DHT	CHT (4m)	CHT (8m)	CHT (Avg)	DHT	CHT (4m)	CHT (8m)	CHT (Avg)	DHT	CHT (4m)	CHT (8m)	CHT (Avg)
1.5	142.12	147.78	153.56	150.67	152.50	303.03	281.69	292.36	237.33	177.78	219.78	198.78
3	161.93	150.95	162.38	156.67	181.16	322.58	301.89	312.24	241.55	194.17	230.55	212.36
4.5	183.96	144.36	166.33	155.34	251.88	344.83	406.09	375.46	241.80	190.48	200.00	195.24
6	162.82	137.64	171.55	154.60	324.77	392.16	410.26	401.21	269.07	215.05	239.52	227.29
7.5	184.85	140.66	154.72	147.69	265.63	412.37	392.16	402.27	252.23	199.00	259.74	229.37
9	218.09	147.38	168.03	157.70	295.80	294.12	304.18	299.15	266.19	223.46	299.63	261.55
10.5	253.96	140.91	171.91	156.41	333.53	412.37	432.43	422.40	281.61	317.46	310.08	313.77
12	284.35	155.24	182.22	168.73	290.14	408.16	430.11	419.14	281.09	325.20	340.43	332.82
13.5	311.47	180.84	192.49	186.66	300.21	298.51	313.73	306.12	287.35	357.14	299.63	328.39
15	296.45	186.67	204.49	195.58	291.18	294.12	278.75	286.44	287.48	347.83	380.95	364.39
16.5	302.17	186.67	193.85	190.26	289.27	310.08	271.19	290.64	297.86	360.36	360.36	360.36
18	282.92	187.50	195.70	191.60	289.48	283.69	258.90	271.30	305.79	373.83	390.24	382.04
19.5	323.43	223.40	250.00	236.70	306.31	242.42	240.24	241.33	299.34	380.95	410.26	395.61
21	321.41	300.00	260.32	280.16	301.55	330.58	352.42	341.50	318.12	363.64	421.05	392.35
22.5	323.35	251.50	264.52	258.01	306.30	373.83	347.83	360.83	306.75	392.16	470.59	431.38
24	318.25	341.46	288.73	315.10	309.15	294.12	320.00	307.06	303.76	416.67	421.05	418.86
25.5	283.71	344.26	350.43	347.35	310.96	303.03	301.89	302.46	305.47	370.37	370.37	370.37
27	319.98	347.11	341.67	344.39	308.71	312.50	279.72	296.11	308.41	388.35	390.24	389.30
28.5	316.31	318.18	341.67	329.93	323.01	330.58	337.55	334.07	316.60	400.00	370.37	385.19
30	324.19	280.00	320.31	300.16	311.74	363.64	358.74	361.19	312.66	392.16	470.59	431.38

		BH/SH: 52/23; Mubarakpur, Rani										
	Khera					3n/17; Pr	em Vihar	near	DII/CII.	(/E1. A-		4
Depth (m)	DHT	CHT (4m)	CHT (8m)	CHT (Avg)	Najafga DHT	CHT (4m)	CHT (8m)	CHT (Avg)	DHT	6n/51; Az CHT (4m)	CHT (8m)	CHT (Avg)
1.5	190.71	173.16	226.63	199.90	167.45	212.77	253.16	232.97	139.60	168.78	194.17	181.48
3	215.52	204.08	217.39	210.74	197.63	275.86	291.97	283.92	165.40	186.05	205.66	195.86
4.5	226.35	204.08	217.98	211.03	218.91	314.96	285.71	300.34	139.04	188.68	212.77	200.73
6	253.91	220.99	243.90	232.45	240.33	320.00	317.46	318.73	169.86	202.02	238.10	220.06
7.5	247.09	219.78	264.03	241.91	266.46	341.88	300.75	321.32	208.04	219.78	246.15	232.97
9	293.12	259.74	272.11	265.93	243.81	320.00	352.42	336.21	230.04	225.99	253.16	239.58
10.5	272.06	279.72	301.89	290.81	257.21	360.36	390.24	375.30	214.09	228.57	261.44	245.01
12	284.89	294.12	303.03	298.58	273.22	353.98	398.01	376.00	247.19	233.92	267.56	250.74
13.5	285.60	380.95	320.00	350.48	267.17	300.75	333.33	317.04	265.11	236.69	286.74	261.72
15	289.63	366.97	373.83	370.40	323.33	291.97	337.55	314.76	289.86	275.86	298.51	287.19
16.5	289.73	317.46	347.83	332.65	315.61	330.58	350.88	340.73	302.50	261.44	283.69	272.57
18	293.15	333.33	318.73	326.03	310.44	296.30	303.03	299.67	295.92	264.90	288.81	276.86
19.5	287.66	363.64	370.37	367.01	339.18	392.16	343.35	367.76	294.92	268.46	298.51	283.49
21	307.59	373.83	340.43	357.13	313.95	322.58	360.36	341.47	297.40	296.30	330.58	313.44
22.5	296.79	396.04	396.04	396.04	316.04	487.80	529.80	508.80	308.55	270.27	311.28	290.78
24	305.28	416.67	432.43	424.55	308.76	327.87	465.12	396.50	315.37	273.97	299.63	286.80
25.5	298.75	400.00	418.85	409.43	314.37	416.67	479.04	447.86	318.50	300.75	334.73	317.74
27	308.07	388.35	408.16	398.26	311.89	425.53	500.00	462.77	311.10	317.46	350.88	334.17
28.5	297.00	425.53	430.11	427.82	318.36	380.95	439.56	410.26	318.26	330.58	366.97	348.78
30	308.52	425.53	404.04	414.79	333.00	373.83	449.44	411.64	318.18	347.83	382.78	365.31

Table 7.2 continue

Table 7.2 continue

	BH/SH:	4/52; Bud	ha garder	1	BH/SH:	28'/11; Kl	hera Daba	ır				
			-						BH/SH:	64/35; Ra	jokri Villa	ige
Depth		CHT	CHT	CHT		CHT	CHT	CHT		CHT	CHT	CHT
(m)	DHT	(4m)	(8m)	(Avg)	DHT	(4m)	(8m)	(Avg)	DHT	(4m)	(8m)	(Avg)
1.5	131.45	153.26	171.67	162.47	117.69	186.92	198.51	192.72	157.64	189.57	231.21	210.39
3	175.44	170.94	225.99	198.47	136.99	195.12	197.04	196.08	174.83	164.61	229.23	196.92
4.5	125.70	231.21	312.50	271.86	153.98	125.00	170.21	147.61	208.33	157.48	208.88	183.18
6	175.88	268.46	333.33	300.90	178.49	148.70	163.27	155.99	209.63	199.00	266.67	232.84
7.5	210.40	263.16	313.73	288.45	170.00	177.78	183.07	180.43	230.98	219.78	285.71	252.75

9	322.91	291.97	303.03	297.50	213.18	204.08	190.48	197.28	239.63	217.39	248.45	232.92
10.5	246.95	285.71	336.13	310.92	209.63	224.72	208.88	216.80	232.63	256.41	291.97	274.19
12	248.51	322.58	300.75	311.67	230.40	176.21	194.17	185.19	247.05	264.90	301.89	283.40
13.5	271.82	344.83	318.73	331.78	311.51	220.99	204.08	212.54	253.24	246.91	336.13	291.52
15	270.93	327.87	372.09	349.98	264.47	191.39	208.33	199.86	270.46	231.21	277.78	254.50
16.5	278.33	412.37	363.64	388.01	272.08	198.02	228.57	213.30	275.17	196.08	325.20	260.64
18	280.23	465.12	406.09	435.61	280.23	205.13	245.40	225.27	297.40	248.45	343.35	295.90
19.5	302.52	473.37	396.04	434.71	288.91	256.41	250.00	253.21	271.94	212.77	333.33	273.05
21	300.25	459.77	410.26	435.02	327.88	251.57	274.91	263.24	284.65	236.69	320.00	278.35
22.5	292.61	459.77	414.51	437.14	299.91	273.97	285.71	279.84	285.66	238.10	360.36	299.23
24	304.14	430.11	418.85	424.48	328.80	270.27	250.78	260.53	287.94	175.44	290.91	233.18
25.5	309.87	449.44	432.43	440.94	307.28	277.78	262.30	270.04	301.54	186.05	265.78	225.92
27	299.28	459.77	457.14	458.46	296.68	291.97	270.27	281.12	295.40	225.99	384.62	305.31
27	2, 7.20			.20.10	22 0.00	_/1.//	2. 3.27	201112	2,0.10		2011.02	200.01
28.5	310.46	459.77	465.12	462.45	302.94	298.51	282.69	290.60	301.35	224.72	392.16	308.44
30	328.62	540.54	479.04	509.79	299.66	307.69	289.86	298.78	304.79	250.00	400.00	325.00

Table 7.2 continue

Table 7.2 continue												
	BH/SH:	5'/58; PT	S Waziral	bad	BH/SH:	48/54; Be	gumpur		BH/SH:	/51; Rid	ge Observ	atory
Depth (m)	DHT	CHT (4m)	CHT (8m)	CHT (Avg)	DHT	CHT (4m)	CHT (8m)	CHT (Avg)	DHT	CHT (4m)	CHT (8m)	CHT (Avg)
1.5	170.20	114.29	123.65	118.97	149.37	174.67	201.51	188.09	236.20	178.57	205.66	192.12
3	181.82	137.46	119.76	128.61	173.61	193.24	218.58	205.91	271.96	239.52	212.20	225.86
4.5	207.61	132.01	144.40	138.21	143.69	208.33	220.99	214.66	314.44	224.72	211.08	217.90
6	221.88	137.93	134.91	136.42	173.76	224.72	251.57	238.15	344.01	225.99	224.09	225.04
7.5	207.82	137.46	138.89	138.18	211.44	217.39	287.77	252.58	229.48	236.69	229.23	232.96
9	237.32	137.46	156.25	146.86	232.83	253.16	299.63	276.40	264.26	281.69	220.99	251.34
10.5	251.37	136.52	166.32	151.42	216.08	238.10	290.91	264.51	275.07	289.86	235.29	262.58
12	264.07	156.86	184.33	170.60	249.00	236.69	308.88	272.79	264.30	281.69	341.88	311.79
13.5	264.66	176.99	213.90	195.45	265.16	245.40	334.73	290.07	279.95	279.72	321.29	300.51
15	274.76	198.02	182.23	190.13	261.79	285.71	322.58	304.15	291.93	320.00	326.53	323.27
16.5	279.24	211.64	204.08	207.86	278.33	238.10	305.34	271.72	280.44	434.78	352.42	393.60
18	293.15	210.53	206.19	208.36	278.96	289.86	306.51	298.19	291.51	392.16	392.16	392.16

19.5	296.66	210.53	225.35	217.94	283.16	325.20	310.08	317.64	306.36	449.44	423.28	436.36
21	287.33	213.90	219.78	216.84	288.50	270.27	333.33	301.80	300.90	459.77	421.05	440.41
22.5	283.89	245.40	238.81	242.11	299.12	273.97	327.87	300.92	305.10	465.12	416.67	440.90
24	308.77	273.97	200.50	237.24	295.64	264.90	283.69	274.30	301.58	481.93	427.81	454.87
25.5	309.49	259.74	241.69	250.72	298.40	298.51	350.88	324.70	310.47	449.44	437.16	443.30
27	304.63	259.74	258.06	258.90	299.28	298.51	308.88	303.70	311.18	454.55	451.98	453.27
28.5	318.36	183.49	263.16	223.33	301.99	298.51	379.15	338.83	313.20	487.80	493.83	490.82
30	338.54	236.69	275.86	256.28	299.36	298.51	423.28	360.90				

Table 7.2 continue

	BH/SH: 53'/12;											
	BH/SH:	9'/3; Mui	ıdela			ur. Najafa	zarh	BH/SH:	53/54: Pi	ıshp Vihar		
Depth		CHT	CHT	CHT	CHT	CHT	CHT	Depth(CHT	CHT	CHT
(m)	DHT	(4m)	(8m)	(Avg)	(4m)	(8m)	(Avg)	m)	DHT	(4m)	(8m)	(Avg)
1.5	160.00	224.72	220.99	222.86	103.09	135.14	119.12	1	147.25	181.82	176.21	179.02
3	185.87	239.52	254.78	247.15	103.81	139.37	121.59	2.5	151.67	189.57	191.39	190.48
4.5	207.61	256.41	291.97	274.19	120.00	150.38	135.19	4	145.80	310.08	202.53	256.31
6	212.09	216.22	253.97	235.10	114.94	142.35	128.65	5.5	162.31	310.08	303.03	306.56
7.5	219.64	246.91	256.41	251.66	132.74	141.34	137.04	7	185.34	300.75	278.75	289.75
9	251.25	338.98	370.37	354.68	136.36	148.15	142.26	8.5	217.46	279.72	349.34	314.53
10.5	254.79	344.83	355.56	350.20	142.86	149.53	146.20	10	233.12	353.98	357.14	355.56
12	264.63	296.30	330.58	313.44	179.64	214.48	197.06	11.5	259.61	360.36	416.67	388.52
13.5	280.48	277.78	290.91	284.35	201.34	235.29	218.32	13	270.95	231.21	360.36	295.79
15	186.42	330.58	360.36	345.47	241.94	277.78	259.86	14.5	276.50	259.74	344.83	302.29
16.5	286.79	322.58	333.33	327.96	270.27	280.70	275.49	16	271.26	281.69	344.83	313.26
18	295.03	289.86	310.08	299.97	300.00	268.46	284.23	17.5	284.94	277.78	337.55	307.67
19.5	291.02	312.50	307.69	310.10	315.79	303.03	309.41	19	291.10	277.78	365.30	321.54
21	297.74	317.46	299.63	308.55	283.02	285.71	284.37	20.5	282.25	344.83	400.00	372.42
22.5	303.09	333.33	316.21	324.77	270.27	283.69	276.98	22	295.00	363.64	465.12	414.38
24	303.76	338.98	318.73	328.86	272.73	287.77	280.25	23.5	293.57	258.06	384.62	321.34
25.5	311.74	341.88	352.42	347.15	254.24	308.88	281.56	25	290.68	327.87	370.37	349.12
27	303.61	325.20	366.97	346.09	270.27	336.13	303.20	26.5	302.49	281.69	398.01	339.85
28.5	309.12	341.88	353.98	347.93	300.00	317.46	308.73	28	316.73	333.33	390.24	361.79
30	306.64	344.83	357.14	350.99				29.5	319.42	363.64	444.44	404.04
								31	298.54	540.54	406.09	473.32
								32.5	313.65	296.30	366.97	331.64
								34	307.04	285.71	388.35	337.03

	BH/SH: 75/45; Jaunapur				BH/SH:	6'/33; Jan	akpuri		BH/SH:	77'/55; Ch	andanhull	a
Depth (m)	DHT	CHT (4m)	CHT (8m)	CHT (Avg)	DHT	CHT (4m)	CHT (8m)	CHT (Avg)	DHT	CHT (4m)	CHT (8m)	CHT (Avg)
1.5	194.18	296.30	250.00	273.15	117.04	144.93	191.85	168.39	135.62	159.36	191.39	175.38
3	214.59	307.69	257.23	282.46	151.98	150.94	203.56	177.25	139.28	161.29	209.97	185.63
4.5	240.83	320.00	261.44	290.72	161.42	157.48	208.33	182.91	160.55	162.60	182.23	172.42
6	274.19	285.71	275.86	280.79	219.18	165.98	213.90	189.94	149.30	123.84	166.32	145.08
7.5	303.57	289.86	296.30	293.08	200.00	177.78	222.84	200.31	161.29	125.79	212.20	169.00
9	328.30	294.12	320.00	307.06	226.41	189.57	238.10	213.84	190.50	170.94	167.71	169.33
10.5	307.00	281.69	275.86	278.78	254.79	205.13	261.44	233.29	198.87	212.77	204.60	208.69
12	306.27	294.12	318.73	306.43	275.58	232.56	270.27	251.42	201.42	156.25	183.91	170.08
13.5	332.86	333.33	372.09	352.71	257.41	248.45	277.78	263.12	205.25	228.57	224.09	226.33
15	269.05	388.35	402.01	395.18	292.91	258.06	290.91	274.49	211.21	156.86	226.63	191.75
16.5	273.84	400.00	410.26	405.13	282.97	273.97	303.03	288.50	230.37	209.42	227.27	218.35
18	269.18	384.62	425.53	405.08	279.38	277.78	296.30	287.04	243.26	170.94	197.53	184.24
19.5	267.55	392.16	434.78	413.47	319.01	245.40	249.22	247.31	252.61	203.05	219.18	211.12
21	278.35	392.16	423.28	407.72	310.27	227.27	254.78	241.03	261.98	205.13	246.15	225.64
22.5	280.06	444.44	459.77	452.11	322.78	273.97	287.77	280.87	264.19	246.91	256.41	251.66
24	283.58	493.83	479.04	486.44	311.94	283.69	297.40	290.55	300.75	251.57	336.13	293.85
25.5	287.76	506.33	484.85	495.59	314.78	287.77	300.75	294.26	283.96	259.74	318.73	289.24
27	291.61	519.48	516.13	517.81	314.09	291.97	307.69	299.83	298.30	236.69	343.35	290.02
28.5	292.47	571.43	540.54	555.99	330.80	305.34	326.53	315.94	294.27	270.27	333.33	301.80
30	296.72	588.24	575.54	581.89	343.93	325.20	340.43	332.82	271.44	298.51	305.34	301.93

Table 7.2 continue

Table 7.2 continue

	BH/SH: 35/69; J J Colony, Sarita Vihar											
Depth (m)	DHT	CHT (4m)	CHT (8m)	CHT (Avg)								
1.5	194.18	106.67	102.17	104.42								
3	186.57	108.70	107.82	108.26								
4.5	206.19	122.70	116.96	119.83								
6	233.37	142.35	133.33	137.84								
7.5	247.81	152.09	148.42	150.26								
9	231.74	166.67	159.68	163.18								
10.5	240.09	187.79	156.56	172.18								
12	249.98	180.18	190.48	185.33								
13.5	263.67	187.79	186.92	187.36								
15	258.31	186.05	207.79	196.92								
16.5	274.28	216.22	227.92	222.07								
18	289.01	236.69	222.22	229.46								
19.5	295.78	253.16	225.35	239.26								
21	279.45	258.06	243.16	250.61								
22.5	288.18	251.57	245.40	248.49								
24	285.91	258.06	255.59	256.83								
25.5	286.16	239.52	231.88	235.70								
27	289.45	246.91	269.36	258.14								
28.5	275.14	258.06	246.91	252.49								
30	283.65	264.90	257.23	261.07								

Site and	Description of site and Shear wave velocity at different identified layers	Classification
Location		based on
		NEHRP
Akshar	The site is located near Akshar Dham temple, New Delhi at the bank of	180
Dham Site	river Yamuna. The site is underlain by sediments of the Yamuna River.	<vs(30)<=< td=""></vs(30)<=<>
28 ⁰ 36'	The shear wave velocity profile carried out in this area with station spacing	360
32.13" N	of one meters shows very low shear wave velocity i.e. 175 m/s up to a depth	
& 77 ⁰ 15'	of 10.5 meters and then increases to 285 m/s below 20 meters depth. The	Class 'D'
51.01"E	average shear wave velocity at 25 to 30m is about 350m/s. The average	
	shear wave velocity of 30 meter soil column (Vs30) is therefore about	
	230m/s.	
Ghazipur	The site is located further east of Akshar Dham with thick deposits of sandy	180
28 [°] 36'	material with minor amount of clay and silt.	<vs(30)<=< td=""></vs(30)<=<>
52.79" N	The shear wave velocity (Vs) of the top 8 m soil is < 180 m/sec. Below 8 m	360
&	depth there is slight increase in shear wave velocity to 200m /s which goes	
$77^0 18'$	up to a depth of 17m. Below, 17m the Vs increase to more than 250 m/sec.	Class D
24.40'' E	The average shear wave velocity of 30 meter soil is therefore about 212m/s	
Balsava	This site is located in the northern most part of the city adjacent to the	180
$28^{\circ} 45'$	Balsava Lake.	<vs(30)<=< td=""></vs(30)<=<>
01.14" N	The site shows velocity Vs 100-250 m/s up to depth of 15-18 meters. Below	360
&	18 m depth, the Vs increase to 350 m/s. Further below 25 m the Vs	
$77^{0}09'$	increases to 400 m/s. The average shear wave velocity of 30 meter soil is	Class D
55.19'' E	therefore about 250m/s.	
Kirbi Cantt	This site is located in the central part of the city and shows almost two layer	180
28 [°] 35'	up to 25 m depth and third layer represent velocity more than 300 m/s and	<vs(30)<=< td=""></vs(30)<=<>
21.85"	the last layer is the half space.	360
N,	The top 8 m soil is the fill deposits has the shear wave velocity ~200 m/s.	
$\&77^{0} 06'$	Down to depth below eight meter the velocity increase to 250 m/s . Below	Class D
42 57" E	25 m depth velocity is 300-350 m/s. The average shear wave velocity of 30	
	meter is therefore about 245m/s.	
Nazafgarh	The Nazafgarh site represents the flood plain of Sahibi- Nazafgarh drainage	180
28 [°] 36'	system and is located within Roshnabad stadium in Nazafgarh village	<vs(30)<=< td=""></vs(30)<=<>
21.80" N	situated in the western extremity of the NCT region.	360
&	The shear wave velocity profile indicates a velocity in the range of 300-400	(340m/s)
76 ⁰ 59'	m/s up to a depth of 8 meter and velocity decrease to 280-290 m/s up to the	
21.65" E)	depth of 15m. Below 15 m the Vs again increase to >400 m/s. The average	Class D

Table 7.3: Site classification of 10 representative sites based on Shear wave velocity measurement using MASW Technique

	shear wave velocity of 30 meter is therefore about 240m/s.	
Bhavana Site 28 ⁰ 48' 41.97'' N & 77 ⁰ 00' 34.41'' E	The site is located in the play ground of village Dariya Gaon located in the northern part of the city. The ground has been made by reclaimed soil that is reflected by the top soil shear wave velocity 200 m/s-250 m/s. Below 4 m depth, shear wave velocity found to be very low of the order of 150 m/s-180 m/s. Further, down to 14 m depth the Vs increase to > 300 m/s. Below 20 m depth, the surface is highly undulating from 25m depth down to 35 m. Below 35 m depth the velocity increase of > 400 m/s. The average shear wave velocity of 30 meter is therefore about 250m/s.	180 <vs(30)<= 360 (250m/s) Class D</vs(30)<=
JNU Site 28 ⁰ 32' 07.63'' N, & 77 ⁰ 09' 45.42''E	The site is located on massive and weathered Alwar quartzite rocks, which are very well exposed in an area in almost north east south west direction in JNU. The shear wave velocity varies (600 m/s-800 m/s) at the surface to around 1200m/s at 30m depth and reaches to >2000 m/s at a depth of 50 meters. The average shear wave velocity of 30 meter is therefore about 850 m/s.	760 < Vs(30) <= 1500 Class B
Asola Site 28 ⁰ 27' 02.71'' N, & 77 ⁰ 12' 33.96'' E)	The site is located on massive and weathered Alwar quartzite rocks, which are very well exposed in an area in south north direction in Asola area. In Asola area the profile runs along N-S direction perpendicular to joints and fractures shows shear wave velocity ranging from 400- 800 m/s (20 m depth), 800-1100 m/s (40 m depth), 1100- 1800 m/s (40-70 m) and > 2000 m/s below 80 m depth. The average shear wave velocity of 30 meter is therefore about 700 m/s.	360 < Vs(30) <= 760 Class C
Suhalpur 28 ⁰ 27' 45.14'' N & 77 ⁰ 11' 00.41''E)	The Suhalpur in Chattarpur basin, which is dominated by older alluvium. The shear wave velocity profile shows of the order of 200-250 m/s at the top 15 m. The second layer which is also marked by Vs 300 m/s. Some dissolution features have been observed between 15m to 25m depth. The average shear wave velocity of 30 meter is therefore about 340 m/s.	180 <vs(30)<= 360 (340m/s) Class D</vs(30)<=
Jasola Site 28 ⁰ 31' 57.06'' N & 77 ⁰ 10' 22.36'' E)	The site is located northeastern side of the JNU in Chatterpur Basin. showing average shear wave velocity of 30meter (Vs30) around 340m/s.	180 <vs(30)<= 360 Class D</vs(30)<=

Sh. Luc Gro. G			unitit		eptils below ground			hear W	ave Vel	ocity (m	ı/s) at va	arious d	epths (n	n)			
S.N. Lut. Long No. Locality name 31 61 91 12 <td></td> <td></td> <td></td> <td>Sh-</td> <td></td> <td>(0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>(27</td> <td></td> <td>Cite</td>				Sh-		(0									(27		Cite
1 28.027 765.144 3. Further 189 213 245 274 224 256 304 300 300 201 2 28.6168 76.8972 3. Mandhels Klund 169 217 267 262 264 247 207 328 320 300 201 D 4 28.6128 76.6982 3. Mandhels Kalun 219 214 272 314 317 328 327 307 300 241 251 5 28.0075 76.9802 3. Mandhels Kalun 203 279 304 324 330 303 324 220 304 340 335 322 20 10 28.5051 76.0304 4. Jargar Kalun 185 217 266 244 300 314 346 319 303 335 272 10 11 28.556 76.8839 4. Jargar Kalun 180 <	S N	Lat	Long		Locality name	•		•		•	•	•	-	•	`	Vs30	
Image: Probability of the state of							,	,				,	,				
1 2 2 2 2 2 2 2 2 2 3				1													
1 22.6128 76 100 23 246 276 277 226 227 236 320 367 390 221 D 5 28.6025 76.8062 3 Manchela Kalan 231 246 272 314 317 236 426 391 333 445 393 322 295 0 7 28.6025 76.9104 3 Jalargur Kalan 199 201 278 303 284 320 404 393 322 0 0 333 333 303 333 303 333 303 770 302 D 0 28591 76.9008 4 Uywa 184 224 224 294 304 303 333 333 303 770 D 112 285.757 76.9008 4 Uywa 212 255 318 296 235 337 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333	-			-													D
6 28.6028 76.9000 3 Manchels Kalan 203 226 259 288 309 317 335 345 359 386 291 D 7 28.6027 75.8871 4 Bagargarh 219 261 300 370 330 370 330 371 330 383 300 373 300 373 301 353 370 302 D 10 28.5591 76.9028 4 Ulya 184 216 311 230 254 304 319 303 333 363 270 D 11 28.5758 76.9004 4 Sharaspor Khals 2.24 224 224 285 395 380 382 440 312 326 340 331 276 D 12 28.578 76.9014 4 Maraspor Khals 2.24 280 300 333 347 344 344 340	-			3													D
7 28.6029 76.9149 3 Infarpur Kalan 199 230 274 203 244 320	5	28.6075	76.8862	3	Mandhela Kalan	219	244	272	314	317	264	297	359	372	394	295	D
8 28.593 76.8871 4 Baqargarh 219 261 300 272 267 304 324 336 400 323 292 D 10 28.5917 75.918 4 Interport Kain 118 212 266 284 307 304 410 359 367 384 410 359 367 384 410 359 377 374 384 410 359 377 384 410 359 382 410 312 D 12 28.5767 76.883 4 Quarjour 174 203 251 272 255 322 350 361 301 351 276 D 15 28.5647 76.9115 4 Dayapur Khurd 233 246 311 356 361 301 347 342 349 D 16 28.5047 76.515 7 Quturgarh 213 242 289 <td>6</td> <td>28.6028</td> <td>76.9000</td> <td>3</td> <td>Mandhela Kalan</td> <td>203</td> <td>226</td> <td>259</td> <td>288</td> <td>309</td> <td>317</td> <td>335</td> <td>345</td> <td>359</td> <td>386</td> <td>291</td> <td>D</td>	6	28.6028	76.9000	3	Mandhela Kalan	203	226	259	288	309	317	335	345	359	386	291	D
9 28.5591 76.9028 4 Ujwa 184 224 274 292 318 380 403 396 374 370 302 D 10 28.5961 76.6383 4 Jafarpur Kalan 185 217 266 284 309 374 304 313 333 353 352 377 D7 12 28.5761 76.0009 4 shamaspur Khalsa 234 224 269 300 318 383 383 383 383 383 383 383 383 383 384 240 314 255 322 303 331 335 333 335	7	28.6029	76.9149	3	Jafarpur Kalan	199	230	279	303	294	320	340	359	370	382	295	D
10 28.5991 76.9198 4 Jafarpur Kalan 185 217 266 284 309 374 394 410 359 367 297 D 11 28.576 76.889 4 Juazpur 184 216 311 230 254 304 310 333 336 207 D 12 28.578 76.9129 4 Ujwa 221 265 395 318 298 295 322 350 361 340 351 276 D 12 28.5647 76.813 4 Durapur fhurd 233 264 311 356 361 340 320 335 363 388 322 D 18 28.8111 76.952 7 Juarpur fhurd 233 242 189 327 273 29 170 263 314 410 250 D 28.7 370 890 207 277 D D	8	28.5953	76.8871	4	Baqargarh	219	261	300	278	267	304	324	336	340	353	292	D
11 28.5766 76.8839 4 Quazipur 184 216 311 230 233 363 270 D 12 28.5751 76.9009 4 shamakpur Khalsa 224 263 309 318 344 350 398 382 410 312 270 D 13 28.5786 76.9124 Ujwa 221 265 395 318 342 350 361 340 351 276 D 15 28.5564 76.9111 4 Ujwa 185 217 262 284 309 320 333 363 388 322 D 16 28.5509 76.9115 4 Daryapur Khurd 233 244 189 327 727 279 123 340 353 365 388 322 D 18 28.61 76.9545 7 Outubgarh 138 231 242 823 225 31	9	28.5591	76.9028	4	Ujwa	184	224	274	292	318	380	403	396	374	370	302	D
12 28.5751 76.9009 4 shamaspur Khalsa 234 224 265 309 318 345 359 382 410 312 D 13 28.578 76.9129 4 Ujwa 221 275 318 298 295 277 307 323 357 286 D 14 28.564 76.9111 4 Ujwa 185 217 262 284 309 320 333 363 388 322 PD 17 28.188 76.978 6 Murgashpur 230 232 257 303 340 320 335 363 388 322 PD 18 28.781 76.9528 6 Murgashpur 230 237 273 249 121 361 376 392 407 275 D 28.761 76.9627 7 Khor Punjab 213 216 286 233 403 353 363 384 282 0D 23 28.773 76.9628 8 M	10	28.5991	76.9198	4	Jafarpur Kalan	185	217	266	284	309	374	394	410	359	367	297	D
13 28.5798 76.9129 4 Ujwa 221 265 395 318 298 295 277 307 323 357 298 D 14 28.6647 76.8853 4 Quazipur 174 203 215 272 295 322 350 361 340 354 224 D 15 28.5654 76.9115 4 Daryapur Khurd 233 264 331 356 361 340 320 335 363 388 322 D 17 28.188 76.9718 6 Mungashpur 220 232 257 303 294 312 355 363 388 322 D 18 28.767 76.9612 7 Khor Punjab 213 214 287 277 324 357 370 380 228 D 12 28.7576 76.9623 8 Jonti 188 261 235 252 235 244 277 292 344 342 250 D	11	28.5766	76.8839	4	Quazipur	184	216	311	230	254	304	319	303	333	363	270	D
14 28.5647 76.8853 4 Quazipur 174 203 251 272 295 322 350 361 340 351 276 D 15 28.5654 76.9111 4 Ujwa 185 217 262 284 300 320 330 343 374 354 224 201 335 3263 388 322 D 17 28.8188 76.9738 6 Mungashpur 230 239 257 303 244 312 335 325 345 365 294 D D 92.87761 76.9528 6 Outubgarh 118 237 127 272 286 312 340 357 370 380 289 D 22 28.7767 76.9646 7 Jonti 188 231 212 227 343 353 365 382 266 D 22 28.7486 76.9638 8 Nicampur Rshid 157 182 222 277 301 341 343 353 365 382 </td <td>12</td> <td>28.5751</td> <td>76.9009</td> <td>4</td> <td>shamaspur Khalsa</td> <td>234</td> <td>224</td> <td>269</td> <td>309</td> <td>318</td> <td>345</td> <td>359</td> <td>398</td> <td>382</td> <td>410</td> <td>312</td> <td>D</td>	12	28.5751	76.9009	4	shamaspur Khalsa	234	224	269	309	318	345	359	398	382	410	312	D
15 28.5654 76.9111 4 Ujwa 185 217 262 284 309 320 330 343 374 354 284 D 16 28.5509 76.9115 4 Daryapur Khurd 230 232 257 303 294 312 353 363 388 322 40 17 28.818 76.9738 6 Qutubgarh 213 242 189 327 273 259 170 263 314 410 250 D 19 28.767 76.9528 6 Qutubgarh 188 231 165 272 286 112 461 314 410 250 D 20 28.767 76.9646 7 Jonti 128 261 297 312 341 353 353 334 438 356 361 334 282 D 22 28.77 304 324 353 365 327 349 363 334 282 D 2 26.8641 76.9748 D <	13	28.5798	76.9129	4	Ujwa	221	265	395	318	298	295	277	307	323	357	298	D
16 28.5509 76.9115 4 Daryspur Khurd 233 264 331 356 361 340 320 335 363 388 322 D 17 28.8188 76.9738 6 Mungashpur 230 239 257 303 244 312 335 325 345 305 244 D 18 28.811 76.95315 7 Qutubgarh 188 237 165 272 286 312 361 376 392 407 275 D 20 28.7673 76.9632 7 Khor Punjab 213 216 245 231 297 312 340 353 343 342 282 D 21 28.7673 76.9646 7 Jonti 201 236 2252 235 244 277 292 314 343 282 D 235 267 333 355 333 355 333 355 349 408 410 432 299 D 235 2563	14	28.5647	76.8853	4	Quazipur	174	203	251	272	295	322	350	361	340	351	276	D
17 28.8188 76.9738 6 Mungashpur 230 239 257 303 294 312 335 325 345 365 294 D 18 28.8111 76.9528 6 Cutubgarh 213 242 189 327 273 259 170 263 314 410 250 D 20 28.7673 76.9632 7 Khor Punjab 213 216 246 281 297 312 340 357 370 380 289 D 21 28.7673 76.9632 7 Khor Punjab 213 216 246 281 297 312 340 357 330 345 334 282 D 22 28.7486 76.9658 8 Nizampur Rashid 157 182 222 277 304 322 334 345 349 408 410 432 299 D 25 28.673 76.9650 9 Tikri Kalan 211 200 202 22.623 340 260 <td>15</td> <td>28.5654</td> <td>76.9111</td> <td>4</td> <td>Ujwa</td> <td>185</td> <td>217</td> <td>262</td> <td>284</td> <td>309</td> <td>320</td> <td>330</td> <td>343</td> <td>374</td> <td>354</td> <td>284</td> <td>D</td>	15	28.5654	76.9111	4	Ujwa	185	217	262	284	309	320	330	343	374	354	284	D
18 28.8111 76.9528 6 Qutubgarh 213 242 189 327 273 259 170 263 314 410 250 D 19 28.7661 76.9515 7 Qutubgarh 188 237 165 272 28 312 361 376 392 407 275 D 20 28.7676 76.9632 7 Jonti 188 261 235 252 331 295 327 349 363 334 282 D 21 28.7486 76.9623 8 Jonti 201 239 222 252 235 244 26.77 292 314 343 265 D 24 28.6923 76.96528 8 Nitrahan 169 188 033 315 333 345 344 408 410 432 249 D 25 28.6736 76.9494 9 Tarcid kalan 211 200 221 244 311 342 245 D	16	28.5509	76.9115	4	Daryapur Khurd	233	264	331	356	361	340	320	335	363	388	322	D
19 28.7961 76.9515 7 Qutubgarh 188 237 165 272 286 312 361 376 392 407 275 D 20 28.7673 76.9632 7 Khor Punjab 213 216 246 281 297 312 340 357 370 380 289 D 21 28.7567 76.9623 8 Jonti 201 239 222 252 233 244 277 393 365 382 266 D 22 28.7203 76.9628 8 Nitampur Rashid 157 182 222 277 304 322 344 353 365 382 266 D 24 28.6916 76.96429 9 Tikri Kalan 169 198 303 315 333 449 404 410 432 299 D 25 26.616 76.9494 9 Tikri Kalan 211 202 221 230 233 242 244 312 322	17	28.8188	76.9738	6	Mungashpur	230	239	257	303	294	312	335	325	345	365	294	D
20 28.7673 76.9632 7 Khor Punjab 213 216 246 281 297 312 340 357 370 380 289 D 21 28.7576 76.9466 7 Jonti 188 261 235 252 331 295 327 349 363 344 226 D 22 28.7486 76.9623 8 Jonti 201 239 222 235 244 277 292 314 343 256 D 24 28.6923 76.9653 9 Tikri Kalan 169 198 303 315 333 345 349 408 410 432 299 D 25 28.6736 76.9650 9 Tikri Kalan 211 209 202 221 230 224 331 340 327 353 287 D 26 28.6514 76.9494 9 Jharoda Kalan 211 279 278 400 354 317 286 271 274	18	28.8111	76.9528	6	Qutubgarh	213	242	189	327	273	259	170	263	314	410	250	D
21 28.7576 76.9466 7 Jonti 188 261 235 252 331 295 327 349 363 334 282 D 22 28.7466 76.9623 8 Jonti 201 239 222 252 235 244 277 292 314 343 256 D 24 28.6923 76.9623 9 Tikri Kalan 169 198 303 315 333 345 349 408 410 432 299 D 25 28.6736 76.9650 9 Tikri Kalan 258 208 253 340 260 264 309 277 301 324 274 D 26 28.6514 76.9494 9 Tikri Kalan 211 209 220 221 230 280 223 243 312 322 283 240 278 251 D 29 28.6514 76.9549 9 Jharoda Kalan 211 279 278 405 340	19	28.7961	76.9515	7	Qutubgarh	188	237	165	272	286	312	361	376	392	407	275	D
22 28.7486 76.9623 8 Jonti 201 239 222 252 235 244 277 292 314 343 256 D 23 28.7203 76.9658 8 Nizampur Rashid 157 182 222 277 304 322 334 335 385 382 266 D 24 28.6923 76.9653 9 Tikri Kalan 169 198 303 315 333 345 349 408 410 432 299 D 25 28.6736 76.9650 9 Tikri Kalan 211 209 202 221 230 280 252 244 312 392 245 D 27 28.6537 76.9494 9 Jharoda Kalan 201 218 235 248 231 312 322 283 349 361 280 D 28 28.6437 76.9574 10 Jharoda Kalan 211 279 236 340 354 317 286 271 <td>20</td> <td>28.7673</td> <td>76.9632</td> <td>7</td> <td>Khor Punjab</td> <td>213</td> <td>216</td> <td>246</td> <td>281</td> <td>297</td> <td>312</td> <td>340</td> <td>357</td> <td>370</td> <td>380</td> <td>289</td> <td>D</td>	20	28.7673	76.9632	7	Khor Punjab	213	216	246	281	297	312	340	357	370	380	289	D
23 28.7203 76.9658 8 Nizampur Rashid 157 182 222 277 304 322 334 353 365 382 266 D 24 28.6923 76.9623 9 Tikri Kalan 169 198 303 315 333 345 349 408 410 432 299 D 25 28.6736 76.9650 9 Tikri Kalan 211 209 202 210 200 220 230 230 320 331 340 327 353 287 D 27 28.6654 76.9574 10 Jharoda Kalan 211 279 278 420 341 350 361 280 D 331 <td>21</td> <td>28.7576</td> <td>76.9466</td> <td>7</td> <td>Jonti</td> <td>188</td> <td>261</td> <td></td> <td></td> <td>331</td> <td>295</td> <td>327</td> <td>349</td> <td>363</td> <td>334</td> <td>282</td> <td>D</td>	21	28.7576	76.9466	7	Jonti	188	261			331	295	327	349	363	334	282	D
24 28.6923 76.9623 9 Tikri Kalan 169 198 303 315 333 345 349 408 410 432 299 D 25 28.6736 76.9650 9 Tikri Kalan 258 208 253 340 260 264 309 277 301 324 274 D 26 28.6516 76.9744 9 Tikri Kalan 211 209 202 221 230 280 252 244 311 340 327 353 287 D 28 28.6514 76.9342 9 Jharoda Kalan 200 218 255 234 331 340 327 353 287 D 29 28.6547 76.9574 10 Jharoda Kalan 211 279 278 405 340 354 317 286 271 274 293 D 30 28.6437 76.9574 10 Mitraon 223 255 253 286 298 315 331 330 <td>22</td> <td>28.7486</td> <td>76.9623</td> <td>8</td> <td>Jonti</td> <td>201</td> <td>239</td> <td>222</td> <td>252</td> <td>235</td> <td>244</td> <td>277</td> <td>292</td> <td>314</td> <td>343</td> <td>256</td> <td>D</td>	22	28.7486	76.9623	8	Jonti	201	239	222	252	235	244	277	292	314	343	256	D
25 28.6736 76.9650 9 Tikri Kalan 258 208 253 340 260 264 309 277 301 324 274 D 26 28.6816 76.9744 9 Tikri Kalan 211 209 202 221 230 280 252 244 312 392 245 D 27 28.66514 76.9494 9 Jharoda Kalan 185 248 265 360 295 324 331 40 327 353 287 D 28 28.6546 76.9598 9 Jharoda Kalan 211 279 278 445 340 354 317 286 271 274 293 D 30 28.6437 76.9574 10 Jharoda Kalan 151 237 266 294 312 326 350 380 396 229 D 31 28.6047 76.9573 10 Mitraon	23	28.7203	76.9658		Nizampur Rashid	157	182	222	277	304	322	334	353	365	382	266	D
26 28.6816 76.9744 9 Tikri Kalan 211 209 202 221 230 280 252 244 312 392 245 D 27 28.6653 76.9494 9 Jharoda Kalan 200 218 235 248 231 312 322 283 240 278 251 D 28 28.6514 76.9574 10 Jharoda Kalan 211 279 278 405 340 354 317 286 271 274 293 D 30 28.6437 76.9574 10 Jharoda Kalan 211 279 278 286 298 315 331 350 361 280 D 32 28.6161 76.9573 10 Mitraon 197 193 270 262 401 279 262 243 234 286 253 D 33 28.6167 76.9592 10 Mitraon	24	28.6923	76.9623	9	Tikri Kalan	169	198	303	315	333	345		408	410	432	299	D
27 28.6653 76.9494 9 Jharoda Kalan 185 248 266 306 295 324 331 340 327 353 287 D 28 28.6514 76.9342 9 Jharoda Kalan 200 218 235 248 231 312 322 283 240 278 251 D 29 28.6437 76.9578 9 Jharoda Kalan 151 237 266 294 312 326 350 338 349 361 280 D 31 28.6048 76.9573 10 Mitraon 223 255 253 286 298 315 331 330 336 352 273 D 32 28.6167 76.9573 10 Mitraon 197 193 270 262 401 279 262 243 234 286 253 D 34 28.606 76.9478 10 Surakhpur 194 226 247 264 276 314 328 312	-			-													
28 28.6514 76.9342 9 Jharoda Kalan 200 218 235 248 231 312 322 283 240 278 251 D 29 28.6546 76.9598 9 Jharoda Kalan 211 279 278 405 340 354 317 286 271 274 293 D 30 28.6437 76.9574 10 Jharoda Kalan 151 237 266 294 312 326 350 388 349 361 280 D 31 28.6048 76.9573 10 Mitraon 223 257 253 286 298 315 313 350 380 396 299 D 32 28.6167 76.9592 10 Mitraon 197 270 262 401 279 262 243 234 286 253 D 34 28.6306 76.9478 10 Surakhpur																	
29 28.6546 76.9598 9 Jharoda Kalan 211 279 278 405 340 354 317 286 271 274 293 D 30 28.6437 76.9574 10 Jharoda Kalan 151 237 266 294 312 326 350 338 349 361 280 D 31 28.6048 76.9573 10 Mitroon 223 255 253 286 298 315 331 350 380 396 299 D 32 28.6167 76.9592 10 Mitroon 197 193 270 262 401 279 262 243 234 286 253 D 34 28.6167 76.9478 10 Surakhpur 194 226 247 254 415 432 312 322 350 274 D 35 28.6318 76.9607 10 Najafgarh 203 226 247 254 415 432 354 311 302	-																
30 28.6437 76.9574 10 Jharoda Kalan 151 237 266 294 312 326 350 338 349 361 280 D 31 28.6048 76.9573 10 Mitraon 223 255 253 286 298 315 331 350 380 396 299 D 32 28.6161 76.9502 10 Mitraon 197 193 270 262 401 279 262 243 234 286 253 D 34 28.6306 76.9478 10 Surakhpur 194 226 247 264 276 314 328 312 322 350 274 D 35 28.6318 76.9607 10 Najafgarh 203 226 247 354 415 432 354 312 324 306 D 36 28.5383 76.9818 12 Kangan heri 137 151 185 226 259 289 312 327 376	-																
31 28.6048 76.9573 10 Mitraon 223 255 253 286 298 315 331 350 380 396 299 D 32 28.6161 76.9300 10 Kair 185 207 242 304 279 303 314 330 336 352 273 D 33 28.6167 76.9592 10 Mitraon 197 193 270 262 401 279 262 243 234 286 253 D 34 28.6306 76.9478 10 Surakhpur 194 226 247 264 276 314 328 312 322 350 274 D 35 28.6318 76.9607 10 Najafgarh 203 226 247 354 415 432 354 312 354 313 300 302 D 36 28.5333 76.9818 12 Kangan heri 137 151 185 226 259 289 312 313																	
32 28.6161 76.9300 10 Kair 185 207 242 304 279 303 314 330 336 352 273 D 33 28.6167 76.9592 10 Mitroon 197 193 270 262 401 279 262 243 234 286 253 D 34 28.6306 76.9478 10 Surakhpur 194 226 247 264 276 314 328 312 322 350 274 D 35 28.6318 76.9478 10 Najafgarh 203 226 247 354 415 432 354 312 354 301 302 D 36 28.5383 76.9818 12 Kangan heri 137 151 185 226 259 289 312 327 376 421 236 D 37 28.8014 77.0240 13 Nangal Thakuran 250 246 277 298 320 338 323 340																	
33 28.6167 76.9592 10 Mitraon 197 193 270 262 401 279 262 243 234 286 253 D 34 28.6306 76.9478 10 Surakhpur 194 226 247 264 276 314 328 312 322 350 274 D 35 28.6318 76.9478 10 Najafgarh 203 226 247 354 415 432 354 312 354 301 302 D 36 28.5383 76.9818 12 Kangan heri 137 151 185 226 259 289 312 327 376 421 236 D 37 28.8014 77.0240 13 Nangal Thakuran 250 246 277 298 320 338 323 340 354 378 306 D 38 28.8006 76.9821 13 Katewara 259 249 257 292 312 318 313 340																	
34 28.6306 76.9478 10 Surakhpur 194 226 247 264 276 314 328 312 322 350 274 D 35 28.6318 76.9607 10 Najafgarh 203 226 247 354 415 432 354 312 324 301 302 D 36 28.5383 76.9818 12 Kangan heri 137 151 185 226 259 289 312 327 376 421 236 D 37 28.8014 77.0240 13 Nangal Thakuran 250 246 277 298 320 338 323 340 354 378 306 D 38 28.8006 76.9821 13 Katewara 259 249 257 292 312 318 331 350 359 363 303 D 39 28.8025 76.9981 13 Bajidpur Thakran 213 246 274 292 323 315 331 3																	
3528.631876.960710Najafgarh203226247354415432354312354301302D3628.538376.981812Kangan heri137151185226259289312327376421236D3728.801477.024013Nangal Thakuran250246277298320338323340354378306D3828.800676.982113Katewara259249257292312318331350359363303D3928.802576.998113Bajidpur Thakran213246274292323315331340365384299D4028.790376.977114Khorjat174203246282292304327340353361273D4128.761276.975314Chatesar193198253286298304323331340361277D4228.780077.015114Nangal Thakuran154193212211267288314325335382249D4328.754277.007114Budhanpur200193226244262276298323331345260D44 <td>-</td> <td></td>	-																
3628.538376.981812Kangan heri137151185226259289312327376421236D3728.801477.024013Nangal Thakuran250246277298320338323340354378306D3828.800676.982113Katewara259249257292312318331350359363303D3928.802576.998113Bajidpur Thakran213246274292323315331340365384299D4028.790376.977114Khorjat174203246282292304327340353361273D4128.761276.975314Chatesar193198253286298304323331340361277D4228.780077.015114Nangal Thakuran154193212211267288314325335382249D4328.754277.007114Budhanpur200193226244262276298323331340345260D4428.750377.024414Karala185204216312283256304330430432273D<	-																
3728.801477.024013Nangal Thakuran250246277298320338323340354378306D3828.800676.982113Katewara259249257292312318331350359363303D3928.802576.998113Bajidpur Thakran213246274292323315331340365384299D4028.70376.977114Khorjat174203246282292304327340353361273D4128.761276.975314Chatesar193198253286298304323331340361277D4228.780077.015114Nangal Thakuran154193212211267288314325335382249D4328.754277.007114Budhanpur200193226244262276298323331345260D4428.750377.024414Karala185204216312283256304330430432273D4528.771077.016614Sultanpur Dabas174193264312269288303378365340272D46 <td></td>																	
38 28.8006 76.9821 13 Katewara 259 249 257 292 312 318 331 350 359 363 303 D 39 28.8025 76.9981 13 Bajidpur Thakran 213 246 274 292 323 315 331 340 365 384 299 D 40 28.7903 76.9771 14 Khorjat 174 203 246 282 292 304 327 340 353 361 273 D 41 28.7612 76.9753 14 Chatesar 193 198 253 286 298 304 323 331 340 361 277 D 42 28.7612 76.9753 14 Chatesar 193 198 212 211 267 288 314 325 335 382 249 D 43 28.7542 77.0071 14 Budhanpur 200 193 226 244 262 276 298 323				1													
3928.802576.998113Bajidpur Thakran213246274292323315331340365384299D4028.790376.977114Khorjat174203246282292304327340353361273D4128.761276.975314Chatesar193198253286298304323331340361277D4228.788077.015114Nangal Thakuran154193212211267288314325335382249D4328.754277.007114Budhanpur200193226244262276298323331345260D4428.750377.024414Karala185204216312283256304330430432273D4528.771077.016614Sultanpur Dabas174193264312269288303378365340272D4628.770976.986314Salahpur Majra189199260260238309315320325340265D4728.706776.990815Suda168230309336372243349357307301281D48 <td< td=""><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>				1													
4028.790376.977114Khorjat174203246282292304327340353361273D4128.761276.975314Chatesar193198253286298304323331340361277D4228.788077.015114Nangal Thakuran154193212211267288314325335382249D4328.754277.007114Budhanpur200193226244262276298323331345260D4428.750377.024414Karala185204216312283256304330430432273D4528.771077.016614Sultanpur Dabas174193264312269288303378365340272D4628.770976.986314Salahpur Majra189199260260238309315320325340265D4728.706776.990815Suda168230309336372243349357307301281D4828.730377.023115Karala213182234374380289312414432432322D																	
4128.761276.975314Chatesar193198253286298304323331340361277D4228.788077.015114Nangal Thakuran154193212211267288314325335382249D4328.754277.007114Budhanpur200193226244262276298323331345260D4428.750377.024414Karala185204216312283256304330430432273D4528.771077.016614Sultanpur Dabas174193264312269288303378365340272D4628.770976.986314Salahpur Majra189199260260238309315320325340265D4728.706776.990815Suda168230309336372243349357307301281D4828.730377.023115Karala213182234374380289312414432432322D				1													
4228.788077.015114Nangal Thakuran154193212211267288314325335382249D4328.754277.007114Budhanpur200193226244262276298323331345260D4428.750377.024414Karala185204216312283256304330430432273D4528.771077.016614Sultanpur Dabas174193264312269288303378365340272D4628.770976.986314Salahpur Majra189199260260238309315320325340265D4728.706776.990815Suda168230309336372243349357307301281D4828.730377.023115Karala213182234374380289312414432432322D	-			1													
43 28.7542 77.0071 14 Budhanpur 200 193 226 244 262 276 298 323 331 345 260 D 44 28.7503 77.0244 14 Karala 185 204 216 312 283 256 304 330 430 432 273 D 45 28.7710 77.0166 14 Sultanpur Dabas 174 193 264 312 269 288 303 378 365 340 272 D 46 28.7709 76.9863 14 Salahpur Majra 189 199 260 260 238 309 315 320 325 340 265 D 47 28.7067 76.9908 15 Suda 168 230 309 336 372 243 349 357 301 281 D 48 28.7303 77.0231 15 Karala 213 182 234 374 380 289 312 414 432																	
4428.750377.024414Karala185204216312283256304330430432273D4528.771077.016614Sultanpur Dabas174193264312269288303378365340272D4628.770976.986314Salahpur Majra189199260260238309315320325340265D4728.706776.990815Suda168230309336372243349357307301281D4828.730377.023115Karala213182234374380289312414432432322D					-												
45 28.7710 77.0166 14 Sultanpur Dabas 174 193 264 312 269 288 303 378 365 340 272 D 46 28.7709 76.9863 14 Salahpur Majra 189 199 260 260 238 309 315 320 325 340 265 D 47 28.7067 76.9908 15 Suda 168 230 309 336 372 243 349 357 301 281 D 48 28.7303 77.0231 15 Karala 213 182 234 374 380 289 312 414 432 432 322 D																	
46 28.7709 76.9863 14 Salahpur Majra 189 199 260 260 238 309 315 320 325 340 265 D 47 28.7067 76.9908 15 Suda 168 230 309 336 372 243 349 357 301 281 D 48 28.7303 77.0231 15 Karala 213 182 234 374 380 289 312 414 432 432 322 D																	
47 28.7067 76.9908 15 Suda 168 230 309 336 372 243 349 357 307 301 281 D 48 28.7303 77.0231 15 Karala 213 182 234 374 380 289 312 414 432 432 322 D					•												
48 28.7303 77.0231 15 Karala 213 182 234 374 380 289 312 414 432 432 322 D																	
1 49 20/1301 7/10014 13 Laupui 123 204 202 330 200 232 323 422 423 274 D	49	28.7381	77.0014	15	Ladpur	125	204	262	398	286	292	329	399	422	423	274	D

 Table 7.4: Average Shear Wave Velocity (m/s) for 30m (Vs³⁰) along with Shear Wave Velocities at different depths below ground level.

50	20 7102	76 0020	15	Nizampur Pachid	231	260	265	273	286	267	394	423	420	432	320	D
50 51	28.7192 28.7261	76.9828 77.0042	15 15	Nizampur Rashid Khanjwala	157	268 237	265 264	273	306	367 322	394 306	371	430 361	432 351	279	D
52	28.7201	76.9758	15	Suda	287	313	347	406	291	340	356	412	419	432	326	D
53	28.6953	77.0239	16	Mundka	179	207	225	254	291	221	238	286	289	243	238	D
54	28.6840	77.0076	16	Mundka	226	268	354	338	335	320	338	298	285	309	303	D
55	28.6729	77.0179	16	Mundka	252	194	243	274	297	309	328	338	350	361	285	D
56	28.6526	77.0232	16	Bakarwalan	189	228	243	286	323	312	340	354	372	390	205	D
57	28.6914	76.9766	16	Tikri Kalan	151	228	253	280	282	221	274	252	256	294	231	D
58	28.6805	76.9904	16	Tikri Kalan	191	226	202	225	256	288	303	317	335	347	259	D
59	28.6684	76.9936	16	Hiran Kudna	209	188	202	169	298	176	247	264	274	284	222	D
60	28.6535	76.9840	16	Dhichaon Kalan	180	226	314	312	333	340	359	354	372	384	301	D
61	28.6400	77.0206	10	Bagrola	189	244	336	292	286	350	318	348	365	378	298	D
62	28.6262	77.0202	17	Mohan Garden	163	213	251	274	288	309	322	432	406	376	280	D
63	28.6062	77.0112	17	Najafgarh	213	239	324	286	317	338	356	369	384	374	309	D
64	28.6159	76.9748	17	Najafgarh	224	239	246	279	292	309	331	318	359	374	289	D
65	28.6136	76.9992	17	Najafgarh	199	230	266	281	294	317	327	338	351	361	287	D
66	28.6014	76.9894	17	Roshanpura	219	241	266	281	267	291	300	328	350	363	284	D
67	28.6316	76.9758	17	Dhichaon Kalan	223	220	225	307	221	234	221	254	282	345	247	D
68	28.6345	76.9974	17	Dhichaon Kalan	180	204	259	278	274	325	352	363	372	384	281	D
69	28.5586	76.9811	18	Rewla Khanpur	179	207	242	286	304	318	348	372	398	418	286	D
70	28.5906	76.9796	18	Paprawat	179	220	249	295	304	320	345	361	384	400	288	D
71	28.5927	76.9903	18	Dinarpur	129	171	216	243	282	301	326	354	380	418	249	D
72	28.5801	77.0218	18	Qutubpur	125	149	190	252	281	297	309	333	365	401	236	D
73	28.5782	76.9773	18	Paprawat	149	194	222	252	267	282	298	312	333	359	250	D
74	28.5678	77.0104	18	Chhawla	154	175	189	230	256	269	289	326	357	410	242	D
75	28.5694	76.9967	18	Chhawla	184	217	257	304	320	312	338	353	378	397	290	D
76	28.5534	77.0019	18	Chhawla	134	164	212	271	284	318	333	354	372	421	253	D
77	28.8608	77.0566	20	Lampur	144	198	230	279	307	328	363	382	400	430	230	D
78	28.8692	77.0555	20	Lampur	168	199	238	276	312	329	353	369	359	394	274	D
79	28.8683	77.0944	20	Narela	180	230	207	262	292	312	336	382	402	423	259	D
80	28.8521	77.0675	20	Lampur	180	235	275	309	334	361	369	380	397	423	299	D
81	28.8147	77.0711	21	Sanoth	151	203	246	279	309	333	363	378	409	430	234	D
82	28.8315	77.0723	21	Bankner	185	213	255	289	317	322	357	382	404	430	289	D
83	28.7946	77.0299	22	Bawana	201	239	338	354	363	385	407	423	387	389	331	D
84	28.7998	77.0729	22	Holambi Khurd	278	282	272	292	392	430	430	389	432	395	346	D
85	28.7800	77.0300	22	Sultanpur Dabas	221	256	297	317	271	331	350	324	412	357	304	D
86	28.7732	77.0526	22	Barwala	246	188	212	398	264	317	324	432	430	430	314	D
87	28.7842	77.0670	22	Khera Khurd	264	230	266	320	312	314	405	430	430	430	324	D
88	28.7619	77.0375	22	Sultanpur Dabas	248	244	265	312	340	347	430	430	416	430	330	D
89	28.7601	77.0653	22	Barwala	221	252	281	304	430	430	424	430	430	430	368	С
90	28.7371	77.0386	23	Karala	149	226	255	291	324	349	380	430	430	430	337	D
91	28.7439	77.0517	23	Karala	304	268	217	234	355	283	263	432	430	430	312	D
92	28.7378	77.0714	23	Pansali	197	230	217	295	328	374	306	432	430	430	326	D
93	28.7200	77.0383	23	Mohammadpur Majar	161	222	222	367	378	286	330	368	430	430	326	D
94	28.7257	77.0563	23	Karala	204	193	196	267	432	345	317	423	430	374	312	D
95	28.7200	77.0711	23	Rohini Sec-23	289	220	262	343	343	294	304	367	423	432	325	D
96	28.7106	77.0489	23	Mubarakpur Dabas	197	199	222	361	340	284	309	430	430	430	314	D
97	28.6988	77.0438	24	Kirari Suleman Nagar	217	255	287	295	301	314	328	350	380	398	303	D
98	28.6558	77.0401	24	Ranhola Shafipur	188	220	253	279	295	331	359	378	403	412	293	D
99	28.6828	77.0297	24	Mundka	199	242	278	272	307	331	352	365	382	414	300	D
100	28.5550	77.0394	26	Dwarka Sec-25	180	226	288	320	343	387	384	407	430	430	314	D
101	28.5946	77.0352	26	Dwarka Sec-13	163	211	246	258	328	343	352	365	388	423	283	D
102	28.5949	77.0543	26	Dwarka Sec-5	149	183	217	244	271	309	329	340	371	404	257	D
103	28.5939	77.0711	26	Dwarka Sec-6	169	204	247	281	294	323	338	350	397	432	281	D
104	28.5730	77.0528	26	Dwarka Sec-19	163	233	262	288	312	328	347	361	382	407	288	D

105	28.5814	77.0737	26	Dannan Kalan	189	221	251	283	295	312	359	369	390	408	291	D
105	28.5597	77.0262	26	Pappan Kalan Dwarka Sec-24	200	230	266	288	320	351	347	382	404	408	304	D
100	28.5498	77.0540	26	Dwarka Sec-26	179	230	200	320	336	361	372	390	404	417	304	D
107	28.5550	77.0675	26	Dwarka Sec-20	195	222	242	304	331	347	389	400	408	430	310	D
108	28.5350	77.0517	20	Dwarka Sec-27	195	217	262	294	317	350	363	392	408	423	300	D
109	28.8658	77.0967	28	Mamurpur	151	188	202	309	324	338	365	392	430	423	278	D
110	28.8544	77.1225	28		163	177	246	312	333	356	303	403	405	423	278	D
111	28.8544	77.1018	28	Mamurpur	169	203	240	286	284	312	323	331	352	430 394	287	D
112	28.8655	77.1113	28	Mamurpur Mamurpur	163	193	233	262	279	340	383	400	430	430	274	D
113	28.8261	77.1069	29	Narela	105	198	230	266	272	301	324	334	340	345	254	D
115	28.8147	77.0856	29	Bhorgarh	174	235	264	240	278	306	292	338	392	430	277	D
115	28.8431	77.0881	29	Narela	213	290	272	291	303	414	432	432	432	450	323	D
117	28.8173	77.0976	29	Rajpur Kalan	185	182	221	216	238	234	276	361	382	410	250	D
118	28.8327	77.0921	29	Bhorgarh	211	262	295	307	354	361	374	312	421	419	318	D
119	28.8336	77.1169	29	Tikri Khurd	137	158	211	266	289	331	350	345	354	357	250	D
120	28.8053	77.0972	29	Holambi Kalan	125	161	163	252	267	432	278	392	432	356	240	D
121	28.8172	77.1165	29	Shahpur Garhi	174	198	196	225	251	356	374	392	394	430	269	D
122	28.7884	77.0819	30	Naya Bansh	215	271	281	317	398	372	335	384	388	410	324	D
123	28.7500	77.0765	30	Pehladpur Banger	238	253	239	289	349	303	335	368	371	428	306	D
124	28.7932	77.0975	30	Holambi Khurd	185	213	227	247	274	380	374	386	386	426	285	D
125	28.7958	77.1052	30	Holambi Khurd	228	246	327	327	335	382	398	424	423	394	334	D
126	28.7731	77.0923	30	Khera Khurd	211	194	287	333	350	378	352	314	350	404	301	D
127	28.7806	77.1125	30	Khera Khurd	188	211	225	331	314	354	380	378	407	430	298	D
128	28.7556	77.0921	30	Pehladpur Banger	275	248	260	350	424	409	430	343	430	430	344	D
129	28.7561	77.1131	30	Sirsapur village	179	238	314	298	322	359	418	423	404	430	315	D
130	28.7244	77.0867	31	Rohini Sec-25	235	213	239	276	419	252	298	383	430	423	305	D
131	28.7283	77.1187	31	Rohini Sec-12	204	193	212	256	405	328	318	295	320	423	276	D
132	28.7161	77.0957	31	Rithala	185	271	226	380	430	419	295	430	432	432	319	D
133	28.7098	77.1119	31	Rohini Sec-6, Blk-F	127	152	225	319	430	395	370	351	414	423	333	D
134	28.7464	77.1042	31	Shiv Vihar	180	209	243	280	244	273	289	327	357	430	328	D
135	28.7079	77.0798	31	Sultanpuri	213	238	287	252	363	411	298	423	397	423	278	D
136	28.7016	77.0904	31	Mangolpuri Blk-Y	224	271	231	430	430	322	421	423	378	423	276	D
137	28.6969	77.0779	32	Sultanpuri	185	217	283	304	336	357	371	355	384	407	301	D
138	28.6970	77.1136	32	Pushpanjali Enclave, Rohini	195	222	247	301	322	343	363	367	392	417	299	D
139	28.6508	77.0857	32	Gurunanak Nagar	200	194	247	267	280	282	304	333	363	392	273	D
140	28.6583	77.1042	32	Khayala	154	177	235	259	267	322	327	345	369	421	262	D
141	28.6800	77.0742	32	Nangloi Jat	169	177	255	279	312	340	348	370	400	412	280	D
142	28.6881	77.0956	32	Mangolpuri	144	198	216	251	286	303	335	374	390	426	263	D
143	28.6661	77.0917	32	Sunder Aptt, Sunder Vihar	149	204	222	264	306	324	359	359	397	399	271	D
144	28.6670	77.1023	32	Jwala Heri, Paschim Vihar	161	183	211	248	304	312	343	354	380	400	264	D
145	28.6439	77.1083	33	Park, Near Tagor Garden	209	285	292	430	423	309	312	324	343	385	322	D
146	28.6306	77.1069	33	Tihar Village	255	288	324	324	351	369	390	392	392	423	343	D
147	28.6367	77.1225	33	Subhash Nagar, Blk-10	306	307	332	369	349	353	385	400	363	322	348	D
148	28.8436	77.1304	38	Singhola	144	188	207	256	263	266	272	292	328	345	240	D
149	28.8283	77.1450	38	Hamidpur	201	216	264	276	272	309	328	336	350	357	281	D
150	28.8423	77.1704	38	Tajpur Kalan	129	198	225	258	292	304	309	320	331	338	249	D
151	28.8269	77.1296	38	Khanpur	250	265	295	277	376	405	423	383	430	376	335	D
152	28.8135	77.1429	38	Bankoli	129	182	225	234	254	276	304	326	243	230	225	D
153	28.8194	77.1551	38	Hamidpur	137	188	257	312	301	312	301	276	312	309	252	D
154	28.8277	77.1702	38	Bakhtawarpur	129	151	185	304	298	413	421	251	416	424	250	D

120 120 <th>155</th> <th>28.8031</th> <th>77.1313</th> <th>38</th> <th>Alipur</th> <th>190</th> <th>265</th> <th>280</th> <th>258</th> <th>256</th> <th>432</th> <th>430</th> <th>412</th> <th>430</th> <th>432</th> <th>312</th> <th>D</th>	155	28.8031	77.1313	38	Alipur	190	265	280	258	256	432	430	412	430	432	312	D
157 28.8108 77.1574 38 Bahthawarpur 190 262 270 99 317 372 411 430 430 430 320 D 159 28.8108 77.1364 38 Bahthawarpur 151 190 220 220 220 220 230 200 230 D 250 264 230 230 270 210 237 271 430 420																	
158 288 380 77.37.41 38 Bahtmarrun 190 282 270 302 371 373 380 300 320 D 159 287.973 77.130 39 Aligur 161 28.7973 77.1495 39 Aligur 160 28.7973 77.1495 39 Aligur 160 203 329 267 340 307 304 440 463 223 D 161 28.7756 77.1456 39 Mukhmelpur 160 211 228 221 286 281 301 331 344 340 430 230 288 D 164 277.57 71.350 30 Kadgur 212 228 211 225 276 410 355 298 340 331 370 284 D 165 28.753 77.354 39 Makarophagar 174 271 228 241 230 234 340 340 331 294 D 165 28.753 77.354 39 Makarophagar 170																	_
159 287990 77.1455 39 Allour 151 198 200 267 298 284 300 325 294 383 411 419 337 D 160 28.7938 77.1465 39 Mukhmelpur 160 203 329 267 340 367 380 430 400 426 430 207 286 298 314 329 381 430 430 430 430 280 143 287 77.1454 39 Near brafnampur 186 221 222 76 410 355 298 283 430 224 20 287 286 298 340 343 348 330 224 D 166 28.756 77.1361 39 Nard word 173 123 231 271 274 283 313 324 40 274 D 168 28.7563 77.1361 39 Nard word word word word word word word wo	-																
160 28.793 77.168 39 Ally 419 337 D 161 28.7938 77.165 39 401 426 302 D 161 28.7980 77.1654 39 Muhmbeyn 169 211 228 220 286 286 141 359 861 403 273 D 161 28.7766 77.1856 39 Mara Ghari 170 202 246 281 301 313 844 300 284 200 286 287 301 331 302 423 430 284 D 166 28.764 77.1554 39 Nard Synthy 1719 228 221 228 311 276 231 331 302 278 D 168 28.756 77.1564 39 Nard Synthy 163 198 211 216 230 234 240 121 D 170 28.768 77.1564 39																	
161 28.7938 77.1454 39 Muthumelpur 169 203 227 39 367 380 400 426 302 D 162 28.7820 77.1454 39 Budhyur, Bijapur 168 211 238 270 286 298 314 359 361 403 273 D 164 28.776 77.1656 30 Narr forAmmpur 148 224 260 289 345 359 392 324 340 244 D 166 28.7764 77.1535 39 Kadpur 137 132 225 276 410 356 289 340 244 D 166 28.7563 77.1564 39 Narhoura 137 138 217 278 218 131 224 242 235 350 278 D 169 28.7553 77.1564 39 Narhoura 127 228 242 230 260 78 248 312 310 331 334 340 340 340	-																
162 28.7800 77.1664 39 Bush purpt 169 211 228 220 281 301 331 384 380 430 430 208 D 163 28.7766 77.1666 39 Mear fornhampur 128 224 260 281 301 331 384 380 430 430 208 D 164 28.7726 77.1351 39 Kara Ghant 1.79 203 264 281 301 331 340 440 288 D 166 28.763 77.1354 39 Near Swaroopnagar 179 128 312 271 274 288 311 331 300 278 D 167 28.763 77.1564 39 Near Grach, Stragur 1.79 228 321 271 274 288 314 325 432 430 426 430 321 D 172 28.763 77.1554 49 Mush meipur 241 220 329 256 314 325 432 430 4																	
163 28.7796 77.1868 30 Near Ibrahampur 184 224 260 281 301 331 384 380 430 430 298 D 164 28.7745 77.1351 39 Khera Ghari 179 203 246 289 345 359 392 430 238 400 274 D 166 28.7267 77.1524 30 Nathupura 137 193 225 274 291 306 320 331 248 301 331 224 40 D 166 28.7563 77.1364 39 Nane Park, Sirsapur 179 228 242 238 311 324 340 426 430 321 D 170 28.7688 77.1654 39 Swaroopnagar, New Colory 163 198 211 216 230 234 262 314 325 430 430 431 34 430 341 34 34 340 349 349 341 340 341 341					•												
164 28.7745 77.133 30 Kadpur 213 228 211 225 276 410 306 230 243 430 278 0 165 28.726 77.1501 39 Kadpur 213 228 211 225 276 410 356 328 348 370 254 D 167 28.761 77.1524 39 Near Swaroopnagar, 174 271 228 312 271 274 288 301 331 294 D 168 28.7563 77.1564 39 Swaroopnagar, New Colory 163 198 211 216 230 234 262 314 319 329 236 D 170 28.7681 77.1525 39 Mathupur 244 220 326 324 242 430 349 341 349 329 236 D 171 28.768 77.1625 39 Mathupura 171																	
165 28.726 77.1501 30 Kadipur 21 228 210 226 240 350 283 340 274 D 166 28.784 77.1722 39 Nathupura 137 193 225 248 291 306 320 334 348 370 726 D 167 28.7621 77.1524 39 Near Swaroopnagar 1/4 271 288 312 271 274 288 314 324 325 324 420 329 326 0 71 325 432 430 427 32 325 432 430 426 430 321 D 171 28.7688 77.1625 39 Kadpur 221 203 260 278 248 312 336 365 403 411 288 D 172 28.7688 77.1626 40 Nagar Bik Ach 278 282 306																	
166 28.7634 77.1722 39 Near Swaroopnagar 174 271 238 312 271 274 288 301 331 294 D 167 28.7621 77.1524 39 Near Swaroopnagar 174 271 228 314 224 288 314 324 375 390 278 D 168 28.7563 77.1554 39 Mukmedpur 224 288 314 324 430 426 430 321 D 170 28.7835 77.1655 39 Kadpur 221 203 260 278 248 312 336 430 426 430 421 D 171 28.7837 77.1554 40 Rohin Transport Sanjay Gandhi Transport 278 222 306 340 304 331 338 430 314 D 172 28.704 77.1454 40 Rohin Sec-18,81k A, Pkt8 255 3																	
167 28.7621 77.1524 39 Near Swaroopnagar 174 271 228 312 271 228 314 324 375 300 276 D 168 28.7565 77.1564 39 Narna Park, Sirsapur 179 228 242 258 314 324 375 300 276 D 169 28.7555 77.1554 39 Swaroopnagar, New Colomy 163 188 211 216 230 264 314 325 432 426 303 321 D 171 28.7688 77.1652 39 Kadipur 221 203 260 278 248 312 336 365 403 411 288 D 172 28.7429 77.1526 40 Robini Sec-18, Bik AG 278 228 355 353 430 394 378 387 423 430 344 D 127 28.7428 423 423 423 423 423 423 423 423 423 423 423	-																
168 28.7563 77.1364 39 Rana Park, Sirsapur 179 228 242 258 311 228 314 324 375 990 278 D 169 28.7533 77.1654 39 Swaroopnagar, New Colony 163 198 211 216 200 234 262 314 319 329 226 D 171 28.7838 77.1552 39 Kadipur 221 203 260 278 248 312 336 65 403 411 288 D 172 28.7429 77.1554 40 Rohin Sec-18, Bik A, Pt8 285 238 430 304 304 331 338 430 342 D 173 28.7367 77.1454 40 Rohin Sec-18, Bik A, Pt8 285 235 353 430 344 343 340 341 D 343 426 430 344 D 177 28.704 77.1454															570		
Info 28.7535 77.1654 39 Swaroopnagar, New Colony 163 198 211 216 230 234 262 314 319 329 236 D 170 28.7881 77.1552 39 Mukhmelpur 224 220 326 344 325 432 430 426 430 321 D 171 28.7888 77.1625 39 Kadipur 221 203 260 278 248 312 336 365 403 411 288 D 172 28.7429 77.1526 40 Nagar Bk AG 278 282 306 340 304 303 378 387 437 433 430 342 D 173 28.7286 77.1493 40 Halderpur 146 293 317 345 380 336 36 426 430 309 D 175 28.706 77.1280 40 Roh															200		
170 28.7881 77.1552 39 Mukhmelpur 244 220 226 314 322 432 430 426 430 321 0 171 28.7688 77.1625 39 Kadipur 221 203 260 278 248 312 336 365 400 411 288 D 172 28.7429 77.1525 40 Nagar bik AG 278 282 306 340 304 303 319 331 338 430 312 D 173 28.7394 77.1526 40 Rohini Sec-18, Bk A, Pkt8 285 238 225 353 430 342 423 430 342 D 174 28.7366 77.1493 40 Haidsawa 174 216 223 332 306 326 426 430 303 309 D 175 28.706 77.1280 40 Rohini Sec-14 189 177 243 237 407 351 368 430 430 317 D	100	20.7505	77.1504	39	Nalia Palk, Silsapul	179	220	242	230	517	290	514	524	575	390	270	U
170 28.7881 77.1552 39 Mukhmelpur 244 220 226 314 322 432 430 426 430 321 0 171 28.7688 77.1625 39 Kadipur 221 203 260 278 248 312 336 365 400 411 288 D 172 28.7429 77.1525 40 Nagar bik AG 278 282 306 340 304 303 319 331 338 430 312 D 173 28.7394 77.1526 40 Rohini Sec-18, Bk A, Pkt8 285 238 225 353 430 342 423 430 342 D 174 28.7366 77.1493 40 Haidsawa 174 216 223 332 306 326 426 430 303 309 D 175 28.706 77.1280 40 Rohini Sec-14 189 177 243 237 407 351 368 430 430 317 D	160	20 7525	77 1654	20	Swarooppagar Now Colopy	162	109	211	216	220	7 21	262	21/	210	220	226	D
171 28.7688 77.1625 39 Kadipur 221 203 260 278 248 312 336 365 403 411 288 D 172 28.7429 77.1526 40 Nagar Bik AG 278 282 206 340 304 303 319 331 338 430 319 D 173 28.7393 77.1526 40 Rohini Sec-18, Bik A, Pkt8 285 238 255 353 430 394 378 387 423 430 314 D 174 28.7393 77.1356 40 Rohini Sec-14 189 177 243 233 330 336 423 430 306 D 177 28.7108 77.1436 40 North Pitampura, Pkt-NU 197 317 311 289 307 343 411 292 423 430 316 D 178 28.7194 77.1436 40 North Pitampura, Pkt-NU 197 317 311 289 307 343 411 <																	
172 28.7429 77.1526 40 Sangar Blk AG 278 282 306 340 303 319 331 338 430 319 D 173 28.7393 77.1358 40 Rohini Sec-18, Bik A, Pkt8 285 238 255 353 430 394 378 387 423 423 423 423 423 423 423 430 304 309 D 174 28.7364 77.1493 40 Rohini Sec-14 189 177 243 273 407 351 368 284 350 403 281 D 177 28.7086 77.1436 40 North Pitampure, Near 197 317 311 289 307 343 411 292 423 430 316 D 178 28.7194 77.1601 40 Bagh 219 235 292 423 270 298 343 430 430 306																	
172 28.7429 77.1526 40 Nagar Bik AG 278 282 306 400 304 303 319 331 338 430 319 D 173 28.7393 77.1358 40 Rohini Sec-18, Bik A, Pkt8 285 238 255 353 430 394 378 387 423 430 340 340 D 175 28.7364 77.1493 40 Halderpur 146 259 317 345 380 336 423 423 430 308 281 D 176 28.7066 77.120 40 Rohini Sec-14 189 177 273 403 586 284 300 316 D 177 28.7108 77.1461 40 North Pitampura, Pit-NU 197 317 311 289 307 343 411 292 423 430 430 336 340 340 340 340 340 340 340 340 340 340 340 340 340 340 34	1/1	20.7000	//.1025	39	Кашриг	221	205	200	270	240	512	550	505	405	411	200	U
172 28.7429 77.1526 40 Nagar Bik AG 278 282 306 400 304 303 319 331 338 430 319 D 173 28.7393 77.1358 40 Rohini Sec-18, Bik A, Pkt8 285 238 255 353 430 394 378 387 423 430 340 340 D 175 28.7364 77.1493 40 Halderpur 146 259 317 345 380 336 423 423 430 308 281 D 176 28.7066 77.120 40 Rohini Sec-14 189 177 273 403 586 284 300 316 D 177 28.7108 77.1461 40 North Pitampura, Pit-NU 197 317 311 289 307 343 411 292 423 430 430 336 340 340 340 340 340 340 340 340 340 340 340 340 340 340 34					Contau Condhi Taonaant												
173 28.7393 77.135 40 Rohini Sec-18, Blk A, Pkt 8 28 238 255 353 430 394 378 437 423 430 342 D 174 28.7364 77.1546 40 Bhalsawa 174 216 327 333 322 390 423 423 430 342 D 175 28.7286 77.1493 40 Haiderpur 146 259 317 345 380 336 426 430 430 309 D 176 28.7096 77.1436 40 North Pitampura, Pkt-NU 197 317 311 289 307 343 411 292 423 430 330 317 D 177 28.7108 77.1436 40 North Pitampura, Pkt-NU 197 317 311 289 307 343 431 430 336 340 300 430 317 D 18 28.7194 <t< td=""><td>172</td><td>28 7429</td><td>77 1526</td><td>40</td><td></td><td>278</td><td>282</td><td>306</td><td>340</td><td>304</td><td>303</td><td>319</td><td>331</td><td>228</td><td>430</td><td>319</td><td>D</td></t<>	172	28 7429	77 1526	40		278	282	306	340	304	303	319	331	228	430	319	D
174 28.7364 77.1646 40 Bhalsawa 174 216 327 333 292 390 423 423 423 430 314 D 175 28.7286 77.1493 40 Haiderpur 146 259 317 345 380 336 326 425 430 430 309 D 176 28.7096 77.1280 40 Rohini Sec-14 189 177 243 273 407 351 368 284 300 430 281 D 177 28.7096 77.1436 40 North Pitampura, Pkt-NU 197 317 311 289 307 343 411 292 423 430 30 316 D 178 28.7194 77.1601 40 Adadrsh Nagar 156 265 377 264 298 359 386 380 430 430 30 306 D 180 28.7041 77.1551 40 Pitampura, Bik-TP Pocket 203 216 260 348	172	20.7425	77.1520	40		270	202	500	340	504	505	515	551	550	450	515	U
174 28.7364 77.1646 40 Bhalsawa 174 216 327 333 292 390 423 423 423 430 314 D 175 28.7286 77.1493 40 Haiderpur 146 259 317 345 380 336 326 425 430 430 309 D 176 28.7096 77.1280 40 Rohini Sec-14 189 177 243 273 407 351 368 284 300 430 281 D 177 28.7096 77.1436 40 North Pitampura, Pkt-NU 197 317 311 289 307 343 411 292 423 430 30 316 D 178 28.7194 77.1601 40 Adadrsh Nagar 156 265 377 264 298 359 386 380 430 430 30 306 D 180 28.7041 77.1551 40 Pitampura, Bik-TP Pocket 203 216 260 348	173	28,7393	77,1358	40	Rohini Sec-18, Blk A, Pkt8	285	238	255	353	430	394	378	387	423	430	342	D
175 28.7286 77.1493 40 Haiderpur 146 259 317 345 380 336 426 430 430 309 D 176 28.7096 77.1280 40 Rohini Sec-14 189 177 243 273 407 351 368 284 350 403 281 D 177 28.7108 77.1436 40 North Pitampura, Pkt-NU 197 317 311 289 307 343 411 292 423 430 316 D 178 28.7194 77.1601 40 Aadarsh Nagar 156 265 377 264 298 359 386 380 430 430 306 D 180 28.7041 77.1571 40 Pitampura, Blk-TP Pocket 203 216 260 348 338 343 335 345 430 430 306 D D 188 28.6928 77.1744 40 Wazirpur Indlarea, Blk-B 115 230 322 347 244 430 <					, ,												
176 28.7096 77.1280 40 Rohini Sec-14 189 177 243 273 407 351 368 284 350 403 281 D 177 28.7108 77.1436 40 North Pitampura, Pkt-NU 197 317 311 289 307 343 411 292 423 430 316 D 178 28.7194 77.1601 40 Sahipur, Near Shalimar 156 265 377 264 298 343 430 430 430 306 D 180 28.7041 77.1551 40 Pitampura, Bik-TP Pocket 203 216 260 348 338 343 335 443 430 430 306 D 180 28.7041 77.1571 40 Pitampura, Bik-TP Pocket 203 216 260 348 338 343 335 443 430 430 306 D 181 28.7041 77.1544 40 Wazirpur Indi area, Bik-B 115 230 332 309 352																	
177 28.7108 77.1436 40 North Pltampura, Pkt-NU 197 317 311 289 307 343 411 292 423 430 316 D 178 28.7194 77.1601 40 Bagh 219 235 292 423 270 298 344 430 430 430 306 D 179 28.7191 77.1747 40 Aadarsh Nagar 156 265 377 264 298 359 386 380 430 430 306 D 180 28.7041 77.1551 40 Pitampura, Bik-TP Pocket 203 216 260 348 338 343 335 345 430 430 306 D 181 28.7056 77.1744 40 Wazirpur Indi area, Bik-B 115 230 332 309 352 365 372 373 423 423 430 303 D 182 28.6928 77.1249 41 Saraswati Vihar 180 209 212 320 <				-													
178 28.7194 77.1601 40 Sahipur, Near Shalimar Bagh 219 235 292 423 270 298 343 430 430 430 317 D 179 28.7191 77.1747 40 Aadarsh Nagar 156 265 377 264 298 359 386 380 430 430 306 D 180 28.7041 77.1551 40 Pitampura, Bik-TP Pocket 203 216 260 348 338 343 335 345 430 430 306 D 180 28.7041 77.1551 40 Pitampura, Bik-TP Pocket 203 216 260 348 338 343 335 345 430 430 306 D 181 28.7056 77.1744 40 Wazirpur Indi area, Bik-B 115 230 332 309 352 365 372 373 423 430 303 D 182 28.6981	1/0	2017030				105	1.1	2.0	2/0	,	551			000	.00	201	5
178 28.7194 77.1601 40 Sahipur, Near Shalimar Bagh 219 235 292 423 270 298 343 430 430 430 317 D 179 28.7191 77.1747 40 Aadarsh Nagar 156 265 377 264 298 359 386 380 430 430 306 D 180 28.7041 77.1551 40 Pitampura, Bik-TP Pocket 203 216 260 348 338 343 335 345 430 430 306 D 180 28.7041 77.1551 40 Pitampura, Bik-TP Pocket 203 216 260 348 338 343 335 345 430 430 306 D 181 28.7056 77.1744 40 Wazirpur Indi area, Bik-B 115 230 332 309 352 365 372 373 423 430 303 D 182 28.6981	177	28.7108	77.1436	40	North Pitampura, Pkt-NU	197	317	311	289	307	343	411	292	423	430	316	D
178 28.7194 77.1601 40 Bagn 219 235 292 423 270 298 343 430 430 430 306 D 179 28.7191 77.1747 40 Aadarsh Nagar 156 265 377 264 298 359 386 380 430 430 306 D 180 28.7041 77.1551 40 Pitampura, Bik-TP Pocket 203 216 260 348 338 343 335 345 430 430 306 D 181 28.7056 77.1744 40 Wazirpur Indi area, Bik-B 115 230 332 309 352 365 372 373 423 423 226 D 182 28.6981 77.149 41 Sarawati Vihar 180 209 212 320 401 384 390 405 430 303 D0 183 28.6981 77.1419 41 Pocket-KD 156 193 222 347 244 430 430					Sahipur, Near Shalimar												
180 28.7041 77.1551 40 Pitampura, Blk-TP Pocket 203 216 260 348 338 343 335 345 430 430 306 D 181 28.7056 77.1744 40 Wazirpur IndI area, Blk-B 115 230 332 309 352 365 372 373 423 423 286 D 182 28.6928 77.1744 40 Wazirpur IndI area, Blk-B 115 230 332 309 352 365 372 373 423 423 286 D 183 28.6928 77.1249 41 Saraswati Vihar 180 209 212 320 401 384 390 405 430 303 D 183 28.6981 77.1419 41 South Pitampura, Blk <pi-le< td=""> 262 262 275 378 226 252 298 372 430 423 303 D 185 28.6597</pi-le<>	178	28.7194	77.1601	40		219	235	292	423	270	298	343	430	430	430	317	D
181 28.7056 77.1744 40 Wazirpur Indl area, Blk-B 115 230 332 309 352 365 372 373 423 423 286 D 182 28.6928 77.1249 41 Saraswati Vihar 180 209 212 320 401 384 390 405 430 430 303 D 183 28.6981 77.1419 41 Saraswati Vihar 180 209 212 320 401 384 390 405 430 430 303 D 184 28.6953 77.1419 41 shok Vihar, Ph-I, Blk-E 262 262 275 378 226 252 298 372 430 430 430 296 D 185 28.6597 77.1302 41 Near Raja Garden 238 313 327 314 361 375 351 363 371 334 D 186 28.6703 77.1417 41 East Punjabi Bagh 174 245 275 368 388	179	28.7191	77.1747	40	Aadarsh Nagar	156	265	377	264	298	359	386	380	430	430	306	D
181 28.7056 77.1744 40 Wazirpur Indl area, Blk-B 115 230 332 309 352 365 372 373 423 423 286 D 182 28.6928 77.1249 41 Saraswati Vihar 180 209 212 320 401 384 390 405 430 430 303 D 183 28.6981 77.1419 41 Saraswati Vihar 180 209 212 320 401 384 390 405 430 430 303 D 184 28.6953 77.1419 41 shok Vihar, Ph-I, Blk-E 262 262 275 378 226 252 298 372 430 430 430 296 D 185 28.6597 77.1302 41 Near Raja Garden 238 313 327 314 361 375 351 363 371 334 D 186 28.6703 77.1417 41 East Punjabi Bagh 174 245 275 368 388																	
182 28.6928 77.1249 41 Saraswati Vihar 180 209 212 320 401 384 390 405 430 430 303 D 183 28.6981 77.1419 41 South Pitampura, Blk Pocket-KD 156 193 222 347 244 430 430 396 430 430 296 D 184 28.6953 77.1631 41 ashok Vihar, Ph-I, Blk-E 262 262 275 378 226 252 298 372 430 423 303 D 185 28.6597 77.1631 41 ashok Vihar, Ph-I, Blk-E 262 262 275 378 326 353 363 371 334 D 186 28.6833 77.1450 41 Sakurpur Village 238 276 332 351 345 423 361 365 397 392 345 D 187 28.6708 77.147 41 East Punjabi Bagh 174 245 275 368 388 407	180	28.7041	77.1551	40	Pitampura, Blk-TP Pocket	203	216	260	348	338	343	335	345	430	430	306	D
182 28.6928 77.1249 41 Saraswati Vihar 180 209 212 320 401 384 390 405 430 430 303 D 183 28.6981 77.1419 41 South Pitampura, Blk Pocket-KD 156 193 222 347 244 430 430 396 430 430 296 D 184 28.6953 77.1631 41 ashok Vihar, Ph-I, Blk-E 262 262 275 378 226 252 298 372 430 423 303 D 185 28.6597 77.1631 41 ashok Vihar, Ph-I, Blk-E 262 262 275 378 326 353 363 371 334 D 186 28.6833 77.1450 41 Sakurpur Village 238 276 332 351 345 423 361 365 397 392 345 D 187 28.6708 77.147 41 East Punjabi Bagh 174 245 275 368 388 407																	
183 28.6981 77.1419 41 South Pitampura, Blk Pocket-KD 156 193 222 347 244 430 430 396 430 296 D 184 28.6953 77.1631 41 ashok Vihar, Ph-I, Blk-E 262 262 275 378 226 252 298 372 430 423 303 D 185 28.6597 77.1302 41 Near Raja Garden 238 313 327 314 361 378 329 353 363 371 334 D 186 28.6833 77.1450 41 Sakurpur Village 238 276 332 351 345 423 361 365 397 392 345 D 187 28.6703 77.1417 41 East Punjabi Bagh 174 245 275 368 388 407 352 428 430 430 329 D 188 28.6708 77.1581 41 Karampura Block, Indl Area 188 271 309 334 401	181	28.7056	77.1744	40	Wazirpur Indl area, Blk-B	115	230	332	309	352	365	372	373	423	423	286	D
183 28.6981 77.1419 41 Pocket-KD 156 193 222 347 244 430 430 396 430 296 D 184 28.6953 77.1631 41 ashok Vihar, Ph-I, Blk-E 262 262 275 378 226 252 298 372 430 423 303 D 185 28.6597 77.1302 41 Near Raja Garden 238 313 327 314 361 378 329 353 363 371 334 D 186 28.6833 77.1450 41 Sakurpur Village 238 276 332 351 345 423 361 365 397 392 345 D 187 28.6703 77.1417 41 East Punjabi Bagh 174 245 275 368 388 407 352 428 430 430 329 D 188 28.6708 77.1581 41 Karampura Block, Indl Area 188 271 309 334 401 375	182	28.6928	77.1249	41	Saraswati Vihar	180	209	212	320	401	384	390	405	430	430	303	D
184 28.6953 77.1631 41 ashok Vihar, Ph-I, Blk-E 262 262 275 378 226 252 298 372 430 423 303 D 185 28.6597 77.1302 41 Near Raja Garden 238 313 327 314 361 378 329 353 363 371 334 D 186 28.6833 77.1450 41 Sakurpur Village 238 276 332 351 345 423 361 365 397 392 345 D 187 28.6703 77.1417 41 East Punjabi Bagh 174 245 275 368 388 407 352 428 430 430 329 D 188 28.6708 77.1581 41 Karampura Block, Indl Area 188 271 309 334 401 375 298 394 345 387 315 D 189 28.5431 77.1327 44 CISF Rd, Mahipalpur Extn 169 213 281 306 <					South Pitampura, Blk												
185 28.6597 77.1302 41 Near Raja Garden 238 313 327 314 361 378 329 353 363 371 334 D 186 28.6833 77.1450 41 Sakurpur Village 238 276 332 351 345 423 361 365 397 392 345 D 187 28.6703 77.1417 41 East Punjabi Bagh 174 245 275 368 388 407 352 428 430 430 329 D 188 28.6708 77.1581 41 Karampura Block, Indl Area 188 271 309 334 401 375 298 394 345 387 315 D 189 28.5431 77.1327 44 CISF Rd, Mahipalpur Extn 169 213 281 306 343 361 392 417 430 430 298 D 190 28.4972 77.1325 45 Ghitorni Village 169 193 247 272 292 </td <td>183</td> <td>28.6981</td> <td>77.1419</td> <td>41</td> <td>Pocket-KD</td> <td>156</td> <td>193</td> <td>222</td> <td>347</td> <td>244</td> <td>430</td> <td>430</td> <td>396</td> <td>430</td> <td>430</td> <td>296</td> <td>D</td>	183	28.6981	77.1419	41	Pocket-KD	156	193	222	347	244	430	430	396	430	430	296	D
185 28.6597 77.1302 41 Near Raja Garden 238 313 327 314 361 378 329 353 363 371 334 D 186 28.6833 77.1450 41 Sakurpur Village 238 276 332 351 345 423 361 365 397 392 345 D 187 28.6703 77.1417 41 East Punjabi Bagh 174 245 275 368 388 407 352 428 430 430 329 D 188 28.6708 77.1581 41 Karampura Block, Indl Area 188 271 309 334 401 375 298 394 345 387 315 D 189 28.5431 77.1327 44 CISF Rd, Mahipalpur Extn 169 213 281 306 343 361 392 417 430 430 298 D 190 28.4972 77.1325 45 Ghitorni Village 169 193 247 272 292 </td <td></td>																	
186 28.6833 77.1450 41 Sakurpur Village 238 276 332 351 345 423 361 365 397 392 345 D 187 28.6703 77.1417 41 East Punjabi Bagh 174 245 275 368 388 407 352 428 430 430 329 D 188 28.6708 77.1417 41 East Punjabi Bagh 174 245 275 368 388 407 352 428 430 430 329 D 188 28.6708 77.1581 41 Karampura Block, Indl Area 188 271 309 334 401 375 298 394 345 387 315 D 189 28.5431 77.1327 44 CISF Rd, Mahipalpur Extn 169 213 281 306 343 361 392 417 430 298 D 190 28.4972 77.1325 45 Ghitorni Village 174 220 253 289 320 359<																	
187 28.6703 77.1417 41 East Punjabi Bagh 174 245 275 368 388 407 352 428 430 430 329 D 188 28.6708 77.1581 41 Karampura Block, Indl Area 188 271 309 334 401 375 298 394 345 387 315 D 189 28.5431 77.1327 44 CISF Rd, Mahipalpur Extn 169 213 281 306 343 361 392 417 430 430 298 D 190 28.4972 77.1325 45 Ghitorni Village 174 220 253 289 320 359 378 401 418 436 247 D 191 28.4964 77.1622 45 Sultanpur Village 169 193 247 272 292 338 372 385 394 411 282 D 192 28.4858 77.1331 45 Saink Nivas MES, Ghitorni 180 242 265 277					· ·												
188 28.6708 77.1581 41 Karampura Block, Indl Area 188 271 309 334 401 375 298 394 345 387 315 D 188 28.6708 77.1581 41 Karampura Block, Indl Area 188 271 309 334 401 375 298 394 345 387 315 D 189 28.5431 77.1327 44 CISF Rd, Mahipalpur Extn 169 213 281 306 343 361 392 417 430 430 298 D 190 28.4972 77.1325 45 Ghitorni Village 174 220 253 289 320 359 378 401 418 436 247 D 191 28.4964 77.1622 45 Sultanpur Village 169 193 247 272 292 338 372 385 394 411 282 D 192 28.4858 77.1331 45 Saink Nivas MES, Ghitorni 180 242 265 277 </td <td></td>																	
189 28.5431 77.1327 44 CISF Rd, Mahipalpur Extn 169 213 281 306 343 361 392 417 430 430 298 D 190 28.4972 77.1325 45 Ghitorni Village 174 220 253 289 320 359 378 401 418 436 247 D 191 28.4964 77.1622 45 Sultanpur Village 169 193 247 272 292 338 372 385 394 411 282 D 192 28.4858 77.1331 45 Saink Nivas MES, Ghitorni 180 242 265 277 301 327 357 382 405 422 274 D 193 28.4839 77.1628 45 Saink Nivas MES, Ghitorni 180 242 265 277 301 327 357 382 405 422 274 D 193 28.4839 77.1628 45 Godaipur 157 188 234 247 262 </td <td>187</td> <td>28.6703</td> <td>77.1417</td> <td>41</td> <td>East Punjabi Bagh</td> <td>174</td> <td>245</td> <td>275</td> <td>368</td> <td>388</td> <td>407</td> <td>352</td> <td>428</td> <td>430</td> <td>430</td> <td>329</td> <td>D</td>	187	28.6703	77.1417	41	East Punjabi Bagh	174	245	275	368	388	407	352	428	430	430	329	D
189 28.5431 77.1327 44 CISF Rd, Mahipalpur Extn 169 213 281 306 343 361 392 417 430 430 298 D 190 28.4972 77.1325 45 Ghitorni Village 174 220 253 289 320 359 378 401 418 436 247 D 191 28.4964 77.1622 45 Sultanpur Village 169 193 247 272 292 338 372 385 394 411 282 D 192 28.4858 77.1331 45 Saink Nivas MES, Ghitorni 180 242 265 277 301 327 357 382 405 422 274 D 193 28.4839 77.1628 45 Saink Nivas MES, Ghitorni 180 242 265 277 301 327 357 382 405 422 274 D 193 28.4839 77.1628 45 Godaipur 157 188 234 247 262 </td <td>100</td> <td>20 6700</td> <td>77 1504</td> <td>44</td> <td>Karamaura Dic-lu lu-li Acco</td> <td>100</td> <td>274</td> <td>200</td> <td>224</td> <td>404</td> <td>275</td> <td>200</td> <td>204</td> <td>245</td> <td>207</td> <td>245</td> <td></td>	100	20 6700	77 1504	44	Karamaura Dic-lu lu-li Acco	100	274	200	224	404	275	200	204	245	207	245	
190 28.4972 77.1325 45 Ghitorni Village 174 220 253 289 320 359 378 401 418 436 247 D 191 28.4964 77.1622 45 Sultanpur Village 169 193 247 272 292 338 372 385 394 411 282 D 192 28.4858 77.1331 45 Saink Nivas MES, Ghitorni 180 242 265 277 301 327 357 382 405 422 274 D 192 28.4858 77.1331 45 Saink Nivas MES, Ghitorni 180 242 265 277 301 327 357 382 405 422 274 D 193 28.4858 77.1628 45 Saink Nivas MES, Ghitorni 180 242 265 277 301 327 357 382 405 422 274 D 193 28.4839 77.1628 45 Godaipur 157 188 234 247 262<	188	28.0/08	//.1581	41	Karampura BIOCK, Indi Area	188	2/1	309	334	401	3/5	298	394	345	38/	315	U
190 28.4972 77.1325 45 Ghitorni Village 174 220 253 289 320 359 378 401 418 436 247 D 191 28.4964 77.1622 45 Sultanpur Village 169 193 247 272 292 338 372 385 394 411 282 D 192 28.4858 77.1331 45 Saink Nivas MES, Ghitorni 180 242 265 277 301 327 357 382 405 422 274 D 192 28.4858 77.1331 45 Saink Nivas MES, Ghitorni 180 242 265 277 301 327 357 382 405 422 274 D 193 28.4858 77.1628 45 Saink Nivas MES, Ghitorni 180 242 265 277 301 327 357 382 405 422 274 D 193 28.4839 77.1628 45 Godaipur 157 188 234 247 262<	190	28 5/21	77 1227	11	CISE Rd Mahinalour Exto	160	212	201	306	2/12	261	207	117	120	120	200	р
191 28.4964 77.1622 45 Sultanpur Village 169 193 247 272 292 338 372 385 394 411 282 D 192 28.4858 77.1331 45 Saink Nivas MES, Ghitorni 180 242 265 277 301 327 357 382 405 422 274 D 193 28.4839 77.1628 45 Saink Nivas MES, Ghitorni 180 242 265 277 301 327 357 382 405 422 274 D 193 28.4839 77.1628 45 Godaipur 157 188 234 247 262 298 318 347 349 400 228 D	-																
192 28.4858 77.1331 45 Saink Nivas MES, Ghitorni 180 242 265 277 301 327 357 382 405 422 274 D 193 28.4839 77.1628 45 Godaipur 157 188 234 247 262 298 318 347 349 400 228 D	-				-												
193 28.4839 77.1628 45 HK Farm House, near Godaipur 157 188 234 247 262 298 318 347 349 400 228 D	1.71	20.4004	,,.1022			105	1.7.5	/	212	252	550	572	505	354	-111	202	5
193 28.4839 77.1628 45 HK Farm House, near Godaipur 157 188 234 247 262 298 318 347 349 400 228 D	192	28.4858	77.1331	45	Saink Nivas MES. Ghitorni	180	242	265	277	301	327	357	382	405	422	274	D
193 28.4839 77.1628 45 Godaipur 157 188 234 247 262 298 318 347 349 400 228 D										-		-					
194 28.4706 77.1631 45 Jaunapur 180 208 259 292 301 345 359 375 382 423 297 D	193	28.4839	77.1628	45	-	157	188	234	247	262	298	318	347	349	400	228	D
	194	28.4706	77.1631	45	Jaunapur	180	208	259	292	301	345	359	375	382	423	297	D

195	28.4440	77.1464	46	Farm house, Mandi Village	169	213	259	294							-	
196	28.4416	77.1347	46	KH No.66/6, Mandi Village	134	213	239	282	307	354	373	343	398	430	275	D
197	28.4400	77.1636	46	SEPAL Farm Dera, Mandi Rd, Mandi	169	213	242	278	303	312	340	369	395	431	283	D
198	28.8441	77.1848	40	MCD School, Palla	156	239	242	289	292	320	328	336	340	348	205	D
199	28.8455	77.2001	48	Palla	129	177	179	194	188	273	348	331	326	328	275	D
200	28.8294	77.1788	48	Bakhtawarpur	144	224	207	221	243	269	262	272	304	340	236	D
201	28.8308	77.1986	48	School Jhangla	137	259	277	194	251	262	279	295	312	350	245	D
202	28.8175	77.2134	48	Palla Police Post	137	151	260	238	258	421	423	402	286	306	251	D
203	28.8167	77.1994	48	Near Jal Board Palla	161	203	289	312	312	328	352	359	368	370	285	D
204	28.7978	77.1807	49	Hiranki Village	174	259	309	345	359	327	430	430	430	430	324	D
205	28.7708	77.1875	49	Uttarakhand Coloney	144	165	191	211	295	309	333	400	418	424	251	D
206	28.7639	77.2153	49	Shank No.1, Burari village	149	170	196	216	295	309	333	400	418	424	255	D
207	28.7948	77.1911	49	Near Shank 22, Hiranki Village	174	193	230	282	326	345	365	372	390	411	284	D
208	28.7946	77.1998	49	Tedi Daulatpur	188	193	207	200	266	312	340	357	380	430	263	D
200	20 7010	77 4020	40	Resid. area, Hiranki, Nr	124	150	201	224	202	201	202	200	270	407	240	5
209 210	28.7810 28.7757	77.1838 77.1992	49 49	Ibrahampur Silampur Majra	134 163	158 198	201 274	234 262	292 276	291 315	292 350	306 407	376 414	407 424	240 282	D D
210	20.7757	77.1992	49		105	196	274	202	270	212	550	407	414	424	202	U
211	28.7604	77.1976	49	Behind Shani temple, Burari	174	211	249	279	357	378	390	380	382	407	297	D
212	28.7445	77.1943	50	Sant Nagar	115	177	292	278	274	330	407	390	430	430	265	D
213	28.7144	77.1874	50	Nr Model Town	89	232	322	347	351	430	423	423	376	423	274	D
214	28.7135	77.2047	50	Radio Coloney, Nr Dhaka	190	253	295	387	270	294	328	329	383	412	299	D
214	20.7155	//.204/	50	Village	190	255	295	507	270	294	520	529	202	412	299	U
215	28.7319	77.1810	50	Near Jahangirpuri Blk-JJC	151	268	289	297	327	359	387	350	430	430	302	D
216	28.7336	77.2064	50	Jharoda Dairy Coloney	179	249	286	323	345	356	430	423	430	430	320	D
217	28.7331	77.2185	50	Nr Milan Vihar, Burari	180	220	295	343	430	430	430	430	430	430	329	D
218	28.7260	77.1939	50	Nirankari Ground, nr Jharoda Majra	103	188	207	251	276	359	363	430	430	423	250	D
219	28.7031	77.1966	50	Model Town	207	259	276	323	388	347	382	396	430	430	326	D
220	28.7059	77.2210	50	Timarpur	237	234	345	357	423	273	354	378	423	432	320	D
221	28.6793	77.2205	51	Civil Lines	217	188	290								-	
				Khalsa College, Nr Univ												
222	28.6962	77.2104	51	campus	154	188	185	216	251	282	307	331	354	368	243	D
223	28.6893	77.1978	51	CC Colony		157	227	294	352	280	356	382	388	405	322	D
224	28.6896	77.1834	51	Near Satyavati Colony		228	246	277	276	300	319	430	430	430	318	D
225	28.6478	77.2109	51	Azad Market	206	152	234								-	
226	28.6788	77.1878	51	Shiv Temp, Fakira Bagh, Shastri Nagar	174	164	202	226	267	286	312	338	372	409	251	D
227	28.6850	77.2033	51	Roopnagar Blk-6	163	177	217	235	262	279	307	333	378	392	253	D
			1						-	-	-		-			
228	28.6680	77.2208	51	Civil Lines, Nr Tis Hazari	270	245	265	287							-	
229	28.5208	77.1910	54	Lado Sarai		203	253								-	
230	28.5340	77.1936	54	Govt Nursery, Adhichini	125	204	235	270	282	295	318	328	340	361	252	D
			· - ·					2.0			210	520	5.0	201	-52	-

	I	I	1	I	I	I	l	I			I	l	l			I
				Lal bahadur Vidyapith,												
231	28.5413	77.1829	54	Katwariasarai	185	204	259	294	312	325	343	354	401	414	295	D
232	28.5056	77.2058	54	Neb Sarai, Mehrauli											317	D
233	28.5478	77.1937	54	Rose Garden, Haus Khas	163	204	251	282	306	318	350	352	403	411	249	D
224	20 5200	77 2000	- 4	Deserver Marking Marco	151	100	220	200	214	220	250	275	444	457	270	
234 235	28.5388 28.5387	77.2088 77.2244	54 54	Begampur,Malviya Nagar Shek Sarai,PhI	151 137	188 193	239 221	300 286	314 322	338 343	356 365	375 380	411 397	457 426	270 256	D
235	28.5288	77.2066	54	Hauz Rani Saket	161	204	239	283	306	324	343	371	408	420	230	D
230	20.3200	77.2000	54	Hadz Ham Saket	101	204	235	205	500	524	545	571	400	425	202	
237	28.5080	77.1739	54	Kusum Nursery Vasant Kunj	144	177	272	279	324	355	363	392	423	430	259	D
238	28.5161	77.2119	54	Saket-Bdarpur Rd	174	209	239	279	319	351	369	378	385	394	282	D
				Sainik Farm, Nr Sangam												
239	28.5001	77.2220	54	Vihar	144	226	247	323	350	380	378	412	432	443	283	D
																_
240	28.4986	77.1792	55	Near Chhatarpur Mandir	169	207	246	276	318	348	386	392	416	430	256	D
241	28.4978	77.1942	55	DDA, Maidan Garhi	215	430	421								-	
242	28.4828	77.1806	55	10 Farm, DLF, Chhatarpur	169	198	235	267	301	324	347	363	387	411	276	D
243	28.4856	77.1971	55	Rajpur Khurd	179	230	258	319	309	328	359	370	400	409	297	D
244	28.4717	77.1922	55	Saharpur Extn, ND	169	207	242	251	269	269	361	374	388	431	231	D
245	28.4567	77.2075	55	Forest, Asola Village	180	204	246	303	338	359	372	401	412	430	270	D
246	28.7176	77.2510	58	PT School, Wazirabad	110	188	230	262	298	318	328	348	352	384	247	D
				Ramp No.3, Near Jagatpur												
247	28.7325	77.2325	58	Bund	134	135	196	282	221	320	430	336	350	254	231	D
248	28.7450	77.2559	58	Burari Village	151	182	216	243	292	304	323	343	361	407	258	D
240	20 7070	77 2264	5.0	Deuteu Duidee Masiushad											202	
249	28.7079	77.2364	58	Pantan Bridge, Wazirabad											282	D
250	28.7338	77.2657	58	Govt School, Karwal Nagar	243	220	257	286	320	368	378	396	320	390	305	D
				Near Priya Convent Sch,												
251	28.7188	77.2664	58	Dayalpur	144	177	211	238	258	266	286	312	326	380	241	D
252	28.7039	77.2554	58	Garai Mandu Village	129	165	238	262	289	315	328	343	350	418	252	D
253	28.6857	77.2350	59	New Usmanpur Village	169	193	201	262	269	359	338	347	356	405	267	D
254	28.6587	77.2401	59	MG Park, Lal Quila	217	248	230	252	345	352	356	352	372	432	300	D
255	28.6924	77.2548	59	Pusta-4, Usmanpur	179	232	260	286	318	340	369	376	369	430	297	D
250	20.0700	77 2 4 7 1	50		457	477	220	276	201	207	264	422	424	422	275	
256 257	28.6769 28.6753	77.2471 77.2692	59 59	Opp DMRC off, Shatri Park Silampur	157 163	177 182	238 216	276 269	301 301	307 323	361 315	422 359	421 372	423 384	275 266	D
258	28.6668	77.2503	59	Shastri Park	105	102	210	254	272	295	515	333	572	304	- 200	
230	20.0000	77.2303	33				210	231	272	235						
259	28.6589	77.2692	59	SK School, Geeta Colony											261	D
260	28.7304	77.2814	65	Kali Mandir, Shiv Vihar	163	188	211	230	322	335	432	432	414	414	277	D
261	28.7073	77.3232	65	Harsh vihar	144	165	211	238	269	298	357	365	376	380	251	D
262	28.7149	77.2815	65	Chamanpark, Johripur	157	193	225	286	300	314	325	359	368	376	268	D
262	28.7029	77.3076	65	Nand Nagari	209	320	336	368	338	347	367	376	426	430	339	D
263		77.2769	65	Gokulpuri colony	144	188	211	238	266	286	320	348	372	388	252	D
264	28.7044		c=	For Coll 1.	4.00	4.00	201	222	200	20-	400	400	40.4	400	20-	
	28.7044 28.7029 28.6895	77.2962	65 66	East Gokulpur Near Jyoti colony	169 188	182 203	201 234	230 256	392 301	397 340	426 396	432 430	424 430	429 430	285 274	D

268	28.6777	77.2984	66	Mansarovar Park	224	235	277	301	314	324	349	392	386	423	310	D
269	28.6560	77.2923	66	Arjun Nagar	224	235	319	312	326	340	363	350	370	412	314	D
205	28.6653	77.3056	66	Jhilmil Coloney	188	220	270	315	318	331	357	407	384	411	301	D
270	28.6537	77.3157	66	Anand Vihar, Blk-C	179	228	246	306	282	329	355	347	430	430	292	D
272	28.6192	77.2865	67	Pandav Nagar, Blk-A	188	207	234	254	282	292	309	374	430	430	279	D
272	20.0152	77.2005	07		100	207	234	234	202	LJL	505	5/4	+30	430	275	U
273	28.6242	77.3001	67	Vinod Nagar West, Blk-D	188	249	277	307	295	309	326	370	430	430	301	D
	2010212	7710001	0.		100	2.0	_,,		200	505	020	570	100		501	
274	28.6092	77.3028	67	Mayur Vihar, Ph-I, Pkt 2	151	220	246	279	386	397	392	403	430	430	297	D
				Durga park Coly, near			-								_	
275	28.6111	77.3225	67	Kundali	201	306	322	338	353	365	376	397	430	430	337	D
				Park, near Appolo Hosp.,												
276	28.5398	77.2831	69	Jasola	174	194	255	274	300	314	333	352	397	414	280	D
				near Badarpur Thermal												
277	28.5234	77.3083	69	Plant, Khadar	157	182	221	216	247	262	292	331	345	396	245	D
				DDA Park, Sarita Viahar,												
278	28.5321	77.2956	69	Blk-D	137	203	234	269	295	345	368	378	400	428	272	D
279	28.5412	77.3089	69	Kalindikunj, Jaitpur Road	144	177	230	262	276	292	312	331	376	392	255	D
280	28.5322	77.3161	69	DDA park, JJ Colony	151	171	221	238	279	315	331	370	382	407	258	D
204	20 5062	77 2047	60	Govt School, near		400	24.4	276	257	226	254	276	400	122	204	
281	28.5062	77.3017	69	NTPC,Badarpur	144	188	314	376	357	326	354	376	400	423	291	D
282	28.5025	77.3141	69	Near Irrigation Dept, Hari	157	198	234	336	354	424	430				257	D
282	28.6281	77.3253	72	Nagar Near Gaziur, Blk-D	169	246	264	282	286	315	343	430	430	430	295	D
205	20.0201	77.5255	12	Nedi Gaziui, bik-D	109	240	204	202	200	212	545	450	450	450	295	U
284	28.6121	77.3348	72	Gharoli Dairy Farm, Blk-A	224	207	249	327	336	345	367	423	430	430	313	D
285	28.6032	77.3308	72	Near Kundli, Blk-A1	201	207	260	276	292	295	369	403	417	430	294	D
286	28.5147	77.3417	73	Jaitpur Extn	144	207	253	279	338	350	370	392	426	436	286	D
287	28.5253	77.3313	73	Near Police post, Jaitpur	144	177	230	262	276	292	312	372	392	407	258	D
288	28.8746	77.0795	20	Safiabad	163	228	238	271	263	378	349	382	382	390	281	D
289	28.8757	77.1114	28	Kundli	184	203	230	264	318	340	406	374	408	403	288	D
290	28.8125	77.0875	29	Holambi kalan	177	221	243	185	266	338	365	387	505	454	272	D
291	28.8300	77.1229	29	Tikri Khurd	279	265	275	270	312	334	324	324	373	331	305	D
292	28.7222	77.1056	31	DCE, Rithala	185	188	278	258	318	286	298	338	389	384	303	D
293	28.8183	77.1458	38	Bankoli	163	188	331	286	295	433	361	348	367	394	289	D
294	28.7499	77.1763	39	Bhalsawa Dairy	180	198	201	221	289	380	357	357	373	390	270	D
295	28.7917	77.1597	39	Mukhmelpur	144	193	246	240	294	294	402	383	386	399	268	D
296	28.8417	77.2125	48	Jangola	179	198	230	282	307	318	300	347	352	384	273	D
297	28.8056	77.1917	49	Fatehpur Jat	197	228	292	279	318	372	418	394	407	390	310	D
298	28.8583	77.2417	49	Sankrot	294	228	234	312	345	370	420	435	421	403	329	D
299	28.7083	77.2167	50	Indira Vihar	185	245	255	170	271	338	292	447	455	460	278	D
300	28.7427	77.2053	50	Salarpur	129	193	238	221	247	295	370	382	382	421	253	D
301	28.6917	77.2292	51	Majnu Ka Tila	206	252	296	252	286	263	390	336	309		310	D
302	28.7450	77.2442	58	Libaspur	174	220	211	252	274	347	405	336	363	370	275	D
303	28.5811	77.2330	3	Mandhela Kalan	209	308	247	309	269	295	314	301	273	286	277	D
304	28.4724	77.1860	11	Khera Dabas	169	193	211	221	283	276	288	363	361	357	254	D
305	28.4704	77.2013	12	Shikarpur	174	188	238	430							227	D
200	20 4450	77 4000		Devene Khants st	457	102	100	224	202	200	24.0	222	240	202	242	5
306	28.4458	77.1866	14	Bawana, Khanjawala	157	182	196	221	282	289	318	333	318	292	243	D
307	28.4431	77.2006	17	Mohan Garden	149	158	185	216	216	238	430	430	420	472	234	D
308 309	28.6830 28.6029	77.1622 77.2855	23 28	Madanpur Dabas Narela	228 209	282 228	409 257	430 230	430 254	430 262	388 276	398 279	430 350	423 363	368 263	C C
509	20.0029	11.2000	۷ð	IVALEIA	209	ZZŎ	237	230	204	202	2/0	2/9	320	203	203	L

310	28.6361	77.2986	29	Holambi Kalan	180	226	242	254	272	301	365	333	372	361	276	D
311	28.6768	77.3123	31	Rohini Sec-25	100	220	242	2.54	272	501	303	333	572	501	343	D
312	28.6222	77.3388	33	Janakpuri Blk-B3B		197	239	269	306	398	216	426	430		292	D
313	28.7342	77.0891	35	Rajokri village	185	218	269	277	334	349	319	416	432	392	350	D
314	28.5089	77.1083	38	Bakhtawarpur	280	245	258	309	298	331	298	369	463	367	312	D
				•												
315	28.5889	77.2596	39	Swaroopnagar, New Colony											256	D
316	28.5889	77.2596	41	Keshavpuram											266	D
317	28.5963	77.2578	45	Akoi Farm, Jaunapur											294	D
318	28.5997	77.2569	51	Ridge, Near Univ Campus											250	D
319	28.5976	77.2575	51	Azadpur Market											275	D
320	28.6783	77.1583	52	Budha Jayanti Park											287	D
																-
321	28.6699	77.2704	54	Begampur, Malviya Nagar											293	D
322	28.6783	77.1583	54	Pushpa Vihar, Sec-1											306	D
323 324	28.5524 28.5233	77.2758 77.2279	55 58	Chandan Hulla PTS Wazirabad											299 273	D D
524	26.5255	11.2219	50												275	U
325	28.5431	77.2113	61	Jawaharlal Nehru Stadium											277	D
326	28.6783	77.1583	67	Nangal											249	D
520	20.0705	//.1505	07	i tungui											215	5
327	28.7177	77.1103	69	JJ Colony, Sarita Vihar											272	D
328	28.5248	77.2137	61	Jawaharlal Nehru Stadium											265	D
329	28.6813	77.0971	61	Sarai Kale Khan											281	D
330	28.6407	77.2320	61	Sarai Kale Khan											322	D
				Rajiv Gandhi Smriti Van, Nr												
331	28.6379	77.0761	61	Zoo	208	222	245								253	D
				Rajiv Gandhi Smriti Van, Nr												
332	28.5877	77.0474	61	Zoo	215	226	263								252	D
222	20 5022	77.0402	C1	Rajiv Gandhi Smriti Van, Nr	100	200	242								220	D
333	28.5933	77.0492	61 41	Zoo Tri Nagar	162 194	206 216	242								238	D D
334 335	28.6736 28.5926	77.2981 77.0815	41 59	Tri Nagar Seelampur	229	210	258 286								258 277	D
336	28.6175	77.0480	41	Tri Nagar	227	202	244								253	D
337	28.5963	77.0788	68	Sukhdev Vihar	225	247	244								268	D
338	28.6699	77.1389	62	Pushpa Vihar	211	183	218								242	D
				Paschimshila Park, South												_
339	28.5963	77.2578	54	Blk-S	190	182	203								223	D
340	28.8197	77.0612	41	Tri Nagar	175	184	204								206	D
341	28.6222	77.2042	31	Rohini Sec-5, Pkt-6	220	246	267								269	D
342	28.5300	77.0890	54	Saket	213	230	266								262	D
				Udyog Nagar, Nr Paschim												
343	28.5449	77.1198	32	Vihar	236	247	255								267	D
344	28.5477	77.1250	60	Ramlila Ground	203	225	256								257	D
345	28.5861	77.0551	55	Chandan Hulla	237	190	216								233	D
346	28.5958	77.1200	55	Saharpur Extn, ND	285	261	259								255	D
347	28.7119	77.1601	56	Fatehpur Beri	212	186	237								236	D
348	28.8528	77.0889	56	Bhati Mines	180	209	227								228	D
349	28.6250	76.9231	41	Keshavpuram	217	237	250								245	D
350	28.5889	77.0292	67	Nangal	203	234	253			-					247	D
351	28.5917	76.9250	67	Indraprastha Extn	265	255	262								271	D
352	28.6417	77.1647	66	Dilshad Garden, Blk R	183	224	213								227	D
				,												

1 1		1	1					1	1	1	1	1 1	ĺ	
353	28.6611	77.1458	72	NearMayur Vihar Ph-III	205	211	264						248	D
354	28.6431	77.0972	31	Rohini Sec-25	207	243	255						262	D
355	28.6636	77.1433	35	Rajokri village	198	256	260						261	D
356	28.6919	77.1602	35	Rajokri village	222	202	211						246	D
														_
357	28.6736	77.1931	39	Swaroopnagar, New Colony	163	176	226						221	D
358	28.6797	77.1573	38	Bakhtawarpur	197	211	219						239	D
359	28.6475	77.1797	29	Holambi Kalan	187	189	229						236	D
360	28.5827	77.0579	20	Narela	231	243	245						251	D
				Across NCT boundary in the										
361	28.6431	77.1625	-	East	156	210	244						222	D
362	28.6506	77.3042	58	PTS Wazirabad	170	198	238						245	D
363	28.6484	77.3046	51	Ridge, Near Univ Campus	177	185	216			 			223	D
364	28.5807	77.2924	41	Dilshad Colony, Blk-J	161	207	235			 			227	D
				Lodi Colony, Blk-B, nr Rly										
365	28.6417	77.2522	61	colony	169	184	215			 			223	D
366	28.6681	77.2564	45	Akoi Farm, Jaunapur	206	196	210						227	D
				Across NCT boundary in the										
367	28.5150	77.2722	-	East	193	222	246						244	D
260	20 5000	77 2426	22		400	240	252						252	
368	28.5686	77.2436	33	Near Janakpuri, Blk-2	199	213	253			 			252	D
369	28.5681	77.2189	55	Chandan Hulla	186	220	223						228	D
370	28.5444	77.2583	17	Mohan Garden	190	250	252			 			247	D
371	28.5722	77.1708	14	Nangal Thakuran	217	286	301						280	D
372	28.5781	77.1625	23	Rani Khera	182	201	215 232			 			226	D D
373	28.6222	77.2467	31	Rohini Sec-25	162	140							224	D
374	28.6903	77.1778	54	Push Vihar Sec-1	210	236	267						260	U
375	28.6556	77.1917	59	Vijay Ghat, nr Lal Quila	162	173	210						208	D
375	28.0330	//.191/	35	vijay Griat, ni Lai Quila	102	175	210						208	U
376	28.6083	77.2403	58	Wazirabad nr Jagatpur	174	196	195						225	D
377	28.6111	77.2264	61	Sarai Kale Khan	152	196	238						231	D
378	28.6367	77.2064	28	Mamurpur	204	244	232						242	D
379	28.6417	77.1508	29	Bhorgarh	176	203	217						218	D
				Prashant Vihar, Rohini Sec-										_
380	28.5651	77.0783	40	14	238	199	227						246	D
381	28.6389	77.2375	20	Bankner	141	168	216						212	D
382	28.6260	77.2099	43	RK Puram, Sec-5	218	226	229	İ					248	D
383	28.6735	77.2916	50	Model Town	213	224	276	İ					263	D
384	28.5889	77.2596	69	Tuglakabad	186	184	202	İ					222	D
385	28.5644	77.2479	26	Pochanpur	240	227	265						275	D
386	28.6021	77.1928	44	Vasant Kunj, Blk-B	253	266	253						264	D
				Across NCT boundary in the					Τ					
387	28.5233	77.2279	-	East	195	213	263						255	D
				Across NCT boundary in the								I T	Ţ]
388	28.5523	77.2140	-	East	191	227	253						242	D
				Aram Bagh, Nr Jhandewalan										
389	28.5524	77.2758	52	Extn	179	196	220					+	226	D
				Across NCT boundary in the										
390	28.5616	77.2242	-	East	183	202	237			 		+	236	D
	aa =			Across NCT boundary in the	a									
391	28.5677	77.2272	-	East	217	243	210						237	D

322 28.339 77.136 42 Indiana 20 201 221 201 <th< th=""><th>ĺ</th><th></th><th></th><th></th><th>Nangal Raya, nr Mayapuri</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<>	ĺ				Nangal Raya, nr Mayapuri									
Acros NCr boundary in the Bas Izo Acros NCr boundary in the East Izo Acros NCr boundary in the Bas Izo Izo <thizo< th=""> <thizo< th=""> Izo</thizo<></thizo<>	392	28.6390	77.1316	42	Indl area	208	261	282					272	D
1949 82.85255 77.2103 1. East 187 224 20 20 231 D 395 28.717 77.3103 40 ipernaga, gitted 137 198 217 20 231 D 397 28.5627 77.6129 40 ipernaga, gitted 191 212 241 240 243 D 397 28.562 77.313 50 Near east Mukharje Nagar 191 190 240 241 D 243 D 397 28.600 77.3130 50 Near east Mukharje Nagar 191 212 241 D 241 D 241 D 243 D 244 D 243 D <t< td=""><td>393</td><td>28.5248</td><td>77.2137</td><td>33</td><td>Park, Near Tagor Garden</td><td>194</td><td>244</td><td>232</td><td></td><td></td><td></td><td></td><td>243</td><td>D</td></t<>	393	28.5248	77.2137	33	Park, Near Tagor Garden	194	244	232					243	D
395 28.2717 77.103 41 Prom Nagar, BL-B 134 197 230 Image: Constraint of the c					Across NCT boundary in the									
1986 28.6407 77.2320 40 Juhangirpuri Bik C3 137 198 217 1 0 397 28.8562 77.0539 40 SportScomplex,Bhalsawa 191 190 240 232 D 397 28.8685 77.3130 50 Near east Mukharjee Nagar 191 212 241 243 D 400 28.700 77.2480 40 Bhalsawa 182 192 244 243 D 401 28.701 77.4383 50 Near east Mukharjee Nagar 174 198 232 24 241 243 D 402 28.7011 77.3078 49 Burain 182 175 242 24 243 D 243 D 243 D 243 D 243 D 244 246 D 243 D 244 D 244 D 243 D 244 D 244 D 243 D														
397 28.5862 77.0639 40 Water SportsComplex,Bhalsawa 191 190 240 232 D 398 28.7982 77.062 50 East Mukharji Nagar 191 212 241 243 D 398 28.7982 77.0362 50 East Mukharjie Nagar 174 198 222 241 D 390 28.6005 77.3130 50 Near east Mukharjie Nagar 121 224 248 D 0401 28.6217 77.2836 49 Burari 125 22 229 D 0401 28.6417 77.1833 59 Ciri Lines, Nr IS8T 203 246 196 243 D 244 243 D 244					-									
197 28.582 77.0362 50 East Mukharji Nagar 191 212 241 0 0 23.2 D 398 28.605 77.0362 50 East Mukharji Nagar 191 212 241 0 0 243 0 399 28.605 77.3130 50 Near east Mukharje Nagar 174 198 224 0 241 0 401 28.610 77.285 49 Hirank 203 215 242 0 243 0 402 28.611 77.1833 59 Civil Lines, Nr 188T 203 246 296 0 0 243 0 404 28.532 77.1294 66 Bilshard Garden, Bik-F 203 128 181 0 0 243 0 405 28.5417 77.1593 40 Halderpur 205 198 226 0 0 233 0 400 28.625 77.0769 22 Bwana 190 233 273 0 2255 0 244 <td>396</td> <td>28.6407</td> <td>//.2320</td> <td>40</td> <td>Janangirpuri Bik-C3</td> <td>137</td> <td>198</td> <td>217</td> <td></td> <td></td> <td></td> <td></td> <td>211</td> <td>U</td>	396	28.6407	//.2320	40	Janangirpuri Bik-C3	137	198	217					211	U
197 28.582 77.0362 50 East Mukharji Nagar 191 212 241 0 0 23.2 D 398 28.605 77.0362 50 East Mukharji Nagar 191 212 241 0 0 243 0 399 28.605 77.3130 50 Near east Mukharje Nagar 174 198 224 0 241 0 401 28.610 77.285 49 Hirank 203 215 242 0 243 0 402 28.611 77.1833 59 Civil Lines, Nr 188T 203 246 296 0 0 243 0 404 28.532 77.1294 66 Bilshard Garden, Bik-F 203 128 181 0 0 243 0 405 28.5417 77.1593 40 Halderpur 205 198 226 0 0 233 0 400 28.625 77.0769 22 Bwana 190 233 273 0 2255 0 244 <td></td> <td></td> <td></td> <td></td> <td>Water</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>					Water									
399 28.6805 77.3130 50 Near east Mukharjee Nagar 174 198 232 241 D 400 28.700 77.2835 49 Hiranki 203 215 242 248 D 401 28.617 77.2440 40 Bhasawa 161 224 256 233 D 402 28.701 77.3028 49 Burran 182 175 121 229 D 404 28.542 77.3029 66 RhtasNagar East 201 182 181 242 248 D 406 28.545 77.2477 66 Dishad Garden, 81k-F 240 227 265 276 D 407 28.738 77.1574 31 Rohin Sec-25, nr STP 161 185 235 227 D 408 28.7278 77.1574 31 Rohin Sec-5 178 186 213 2256 D 2256 D 412 <td>397</td> <td>28.5862</td> <td>77.0639</td> <td>40</td> <td></td> <td>191</td> <td>190</td> <td>240</td> <td></td> <td></td> <td></td> <td></td> <td>232</td> <td>D</td>	397	28.5862	77.0639	40		191	190	240					232	D
400 28.7100 77.2835 49 Hiranki 203 215 242 240 248 D 401 28.6121 77.2840 40 Bakawa 161 224 256 237 D 402 28.7017 77.3078 49 Burran 182 175 212 212 228 228 D 403 28.5417 77.1383 59 Civii Lines, Nr IST 203 246 296 226 226 224 D 264 D 404 28.532 77.3079 66 Silampur Ph-III 201 182 181 248 2276 D 406 28.737 77.1574 61 Dishad Garden, Bik-F 240 227 265 227 D 409 28.5621 70.7079 22 Bawaa 190 233 273 265 2256 D 410 28.6677 77.1474 10 Sirapur Vilage 186 213 225 D 411 28.6777 77.2274 26 Dw	398	28.7982	77.0362	50	East Mukharji Nagar	191	212	241					243	D
400 28.7100 77.2835 49 Hiranki 203 215 242 240 248 D 401 28.6121 77.2840 40 Bakawa 161 224 256 237 D 402 28.7017 77.3078 49 Burran 182 175 212 212 228 228 D 403 28.5417 77.1383 59 Civii Lines, Nr IST 203 246 296 226 226 224 D 264 D 404 28.532 77.3079 66 Silampur Ph-III 201 182 181 248 2276 D 406 28.737 77.1574 61 Dishad Garden, Bik-F 240 227 265 227 D 409 28.5621 70.7079 22 Bawaa 190 233 273 265 2256 D 410 28.6677 77.1474 10 Sirapur Vilage 186 213 225 D 411 28.6777 77.2274 26 Dw														
401 28.6217 77.2440 40 Bhalsawa 161 224 256 256 229 D 402 28.7011 77.3078 49 Burari 182 175 212 0 229 D 403 28.5147 77.383 59 Cwll Unes, Nr ISBT 203 246 296 264 D 404 28.5332 77.3029 66 BitasNagar East 201 182 181 0 243 D 406 28.546 77.2477 66 Dilshal Garden, Bik-F 240 227 265 276 D 276 D 406 28.564 77.2474 31 Rohini Sec-25, nr STP 161 185 235 227 D 253 D 2273 D 253 <									 	 				
402 28.7011 77.3078 49 Burari 182 175 212														
403 28.5417 77.1833 59 Civii Lines, Nr ISBT 203 246 296 1 264 D 404 28.5332 77.3029 66 RitasNagar East 201 182 181 1 196 D 405 28.7135 77.1774 66 Dilampur Ph-III 207 189 274 243 D 243 D 406 28.5646 77.2477 66 Dilshad Garden, Bik-F 240 227 265 2 223 D 235 D 225 D 245 D 235 D 225 D 245 D 235 D 225 D 245 D 245 D 245 D 245 D 245 D 225 D 245 D 225 D 245 D <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td> </td> <td> </td> <td></td> <td></td> <td></td> <td></td>				-					 	 				
404 28.532 77.3029 66 RhtasNagar East 201 182 181 196 D 405 28.715 77.1774 66 Silampur Ph-III 207 169 274 243 D 406 28.758 77.1353 40 Haiderpur 205 198 226 276 D 235 D 408 28.7378 77.1594 31 Rohini Sec-25, nr STP 161 185 235 225 D 241 28.567 77.073 55 Nand Nagari 256 258 256 226 248 D 248 D 248 D 241 28.567 77.0	-													
405 28.7135 77.1774 66 Silampur Ph-III 207 189 274 243 D 406 28.5646 77.2477 66 Dishad Garden, Bik-F 240 227 265 276 D 407 28.7238 77.1534 40 Haiderpur 205 198 226 235 D 408 28.7378 77.1594 31 Rohini Sec-25, nr STP 161 185 235 253 D 409 28.6607 77.1274 30 Sirsapur village 186 230 265 255 D 410 28.6779 77.0777 65 Nand Nagari 265 258 256 248 D 413 28.5867 77.093 58 Chitrakut, East of Loni 189 216 245 232 D 414 28.7268 77.1125 57 Burari 175 201 240 232 D </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>														
407 28.7238 77.1353 40 Halderpur 205 198 226 235 D 408 28.7378 77.1594 31 Rohini Sec-25, nr STP 161 185 235 227 D 409 28.5621 77.0769 22 Bawana 190 233 273 255 D 255 D 256 D 256 D 213 277 D 256 D 256 D 256 D 256 D 256 D 256 D 257 D 213 28.730 77.077 65 Nand Nagari 265 28 256 D 248 D 247 D 248 D 248 D 248 D 248 D 248 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>D</td>														D
407 28.7238 77.1353 40 Halderpur 205 198 226 235 D 408 28.7378 77.1594 31 Rohini Sec-25, nr STP 161 185 235 227 D 409 28.5621 77.0769 22 Bawana 190 233 273 255 D 255 D 256 D 256 D 213 277 D 256 D 256 D 256 D 256 D 256 D 256 D 257 D 213 28.730 77.077 65 Nand Nagari 265 28 256 D 248 D 247 D 248 D 248 D 248 D 248 D 248 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>														
408 28.7378 77.1594 31 Rohini Sec-25, nr STP 161 185 235 227 D 409 28.5621 77.0769 22 Bawana 190 233 273 255 265 255 255 265 255 255 265 255 265 265 255 265 265 265 275 0 241 255 275 0 248 0 247 255 77.1125 57 Burari 175 201 240 265 232 0 245 0 247 248 0 245 0 2455 0 241 248 <td>406</td> <td>28.5646</td> <td>77.2477</td> <td>66</td> <td>Dilshad Garden, Blk-F</td> <td>240</td> <td>227</td> <td>265</td> <td></td> <td></td> <td></td> <td></td> <td>276</td> <td>D</td>	406	28.5646	77.2477	66	Dilshad Garden, Blk-F	240	227	265					276	D
409 28.5621 77.0769 22 Bawana 190 233 273 253 D 410 28.6607 77.147 30 Sirsapur village 186 230 265 256 225 D 411 28.6779 77.2274 26 Dwarka Sec-5 178 186 213 225 D 412 28.5730 77.0777 65 Nand Nagari 265 258 256 226 2279 D 413 28.5867 77.0933 58 Chitrakut, East of Loni 189 216 245 248 D 233 D 233 D 235 D 414 28.7268 77.1135 52 South block residential area 167 197 233 232 D 232 D 414 28.7268 77.1135 52 South block residential area 167 197 233 232 D 215 D 417 28.6066 77.1312 24 Ranbola Shafipur 2	407	28.7238	77.1353	40	Haiderpur	205	198	226					235	D
409 28.5621 77.0769 22 Bawana 190 233 273 253 D 410 28.6607 77.147 30 Sirsapur village 186 230 265 256 225 D 411 28.6779 77.2274 26 Dwarka Sec-5 178 186 213 225 D 412 28.5730 77.0777 65 Nand Nagari 265 258 256 226 2279 D 413 28.5867 77.0933 58 Chitrakut, East of Loni 189 216 245 248 D 233 D 233 D 235 D 414 28.7268 77.1135 52 South block residential area 167 197 233 232 D 232 D 414 28.7268 77.1135 52 South block residential area 167 197 233 232 D 215 D 417 28.6066 77.1312 24 Ranbola Shafipur 2														
410 28.6607 77.1474 30 Sirsapur village 186 230 265 265 225 D 411 28.6779 77.2274 26 Dwarka Sec-5 178 186 213 213 225 D 412 28.5730 77.0777 65 Nand Nagari 265 258 256 26 225 D 413 28.5867 77.0933 58 Chitrakut, East of Loni 189 216 245 248 D 414 28.7265 77.1125 57 Burari 175 201 240 240 232 D 415 28.7268 77.1136 52 South block residential area 167 197 233 232 D 416 28.6444 77.2269 21 Sanoth 162 190 197 248 225 D 418 28.6150 77.0889 - East 160 193 248 226 D 420 28.6708 77.2903 72 Kundli Ganil Sec-G 187				-	· · · · · · · · · · · · · · · · · · ·									
411 28.6779 77.2274 26 Dwarka Sec-5 178 186 213 213 225 D 412 28.5730 77.0777 65 Nand Nagari 265 258 256 256 259 D 413 28.5867 77.093 58 Chitrakut, East of Loni 189 216 245 248 D 248 D 414 28.7265 77.1125 57 Burari 175 201 240 240 232 D 415 28.7268 77.1136 52 South block residential area 167 197 233 233 232 D 416 28.6444 77.229 21 Sanoth 162 190 197 24 215 D 417 28.6006 77.0931 24 Ranhola Shafipur 241 253 228 28 226 D 225 D 226 D<									 	 				
412 28.5730 77.0777 65 Nand Nagari 265 258 256 259 D 413 28.5867 77.0933 58 Chitrakut, East of Loni 189 216 245 248 D 414 28.7265 77.1125 57 Burari 175 201 240 233 232 D 415 28.7268 77.1136 52 South block residential area 167 197 233 215 D 416 28.6444 77.269 21 Sanoth 162 190 197 2257 D 417 28.6006 77.0891 24 Ranhola Shafipur 241 233 248 226 D 2277 D 418 28.6150 77.0889 - East 160 193 248 226 D 226 D 226 D 226 D 229 D 229 D 229 D 225 D 225 D														
413 28.5867 77.0933 58 Chitrakut, East of Loni 189 216 245 246 248 D 414 28.7265 77.1125 57 Burari 175 201 240 240 233 D 415 28.7268 77.1136 52 South block residential area 167 197 233 232 D 416 28.6444 77.2269 21 Sanoth 162 190 197 215 D 417 28.6006 77.0931 24 Ranhola Shafipur 241 253 228 226 2257 D 418 28.6150 77.0889 - East 160 193 248 226 D 249 D 420 28.6153 77.0886 72 Kundli 197 322 250 248 226 D 249 D 420 28.6708 77.2703 72 Kundli Gharoli Sec-G 187 204 234 24 24 24 24 24 24 24 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>														
414 28.7265 77.1125 57 Burari 175 201 240 240 235 D 415 28.7268 77.1136 52 South block residential area 167 197 233 233 232 D 416 28.6444 77.2269 21 Sanoth 162 190 197 215 D 417 28.6006 77.0931 24 Ranhola Shafipur 241 253 228 226 257 D 418 28.6150 77.0889 - East 160 193 248 226 226 D 419 28.6153 77.0886 72 Kundli 197 322 250 234 239 D 420 28.6708 77.2903 72 Kundli Gharoli Sec-G 187 204 234 234 239 D 421 28.6708 77.2762 - East 156 217 240 225 D 422 28.7054 77.2863 34 Hauz Khas Park 196														
415 28.7268 77.1136 52 South block residential area 167 197 233 233 232 D 416 28.6444 77.2269 21 Sanoth 162 190 197 28 215 D 417 28.6006 77.0931 24 Ranhola Shafipur 241 253 228 28 257 D 418 28.6150 77.0889 - East 160 193 248 226 226 D 419 28.6153 77.0886 72 Kundli 197 232 250 234 249 D 420 28.6708 77.2903 72 Kundli Gharoli Sec-G 187 204 234 234 239 D 421 28.6683 77.2762 - East 156 217 240 240 225 D 225 D 225 D 225 D 225 D 227 D 227 D 225 D 227 D 227 D 227 D	413	28.5867	77.0933	58	Chitrakut, East of Loni	189	216	245					248	D
416 28.6444 77.2269 21 Sanoth 162 190 197 215 D 417 28.6006 77.0931 24 Ranhola Shafipur 241 253 228 257 D 418 28.6150 77.0889 - East 160 193 248 226 D 419 28.6153 77.0886 72 Kundli 197 232 250 249 D 420 28.6708 77.2903 72 Kundli Gharoli Sec-G 187 204 234 239 D 421 28.6683 77.2762 - East 156 217 240 225 D 225 D 227 D 229 D 229 D 227 D 227 D 227 D 227 D 227 D 227 D 227 D <t< td=""><td>414</td><td>28.7265</td><td>77.1125</td><td>57</td><td>Burari</td><td>175</td><td>201</td><td>240</td><td></td><td></td><td></td><td></td><td>235</td><td>D</td></t<>	414	28.7265	77.1125	57	Burari	175	201	240					235	D
416 28.6444 77.2269 21 Sanoth 162 190 197 215 D 417 28.6006 77.0931 24 Ranhola Shafipur 241 253 228 257 D 418 28.6150 77.0889 - East 160 193 248 226 D 419 28.6153 77.0886 72 Kundli 197 232 250 249 D 420 28.6708 77.2903 72 Kundli Gharoli Sec-G 187 204 234 239 D 421 28.6683 77.2762 - East 156 217 240 225 D 225 D 227 D 229 D 229 D 227 D 227 D 227 D 227 D 227 D 227 D 227 D <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>														
417 28.6006 77.0931 24 Ranhola Shafipur 241 253 228 257 D 418 28.6150 77.0889 - East 160 193 248 226 D 419 28.6153 77.0886 72 Kundli 197 232 250 249 D 420 28.6708 77.2903 72 Kundli Gharoli Sec-G 187 204 234 239 D 421 28.6683 77.2762 - East 156 217 240 225 D 225 D 422 28.7012 77.2888 54 Hauz Khas Park 196 215 231 227 D 423 28.7164 77.2863 43 Papan Kalan 196 215 225 221 D 424 28.7054 77.2863 43 Papan Kalan 196 215 225 211 D </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>														
418 28.6150 77.0889 - Across NCT boundary in the East 160 193 248 248 226 D 419 28.6153 77.0866 72 Kundli 197 232 250 249 D 420 28.6708 77.2903 72 Kundli Gharoli Sec-G 187 204 234 249 239 D 421 28.6683 77.2762 - East 156 217 240 240 225 D 422 28.7012 77.2888 54 Hauz Khas Park 196 215 231 231 227 D 423 28.7164 77.2863 43 Place 198 189 226 225 227 D 424 28.7054 77.2863 43 Pappan Kalan 196 215 225 225 231 227 D 425 28.6764 77.2863 43 Pappan Kalan 196 215 225 225 231 214 D 426 28.6764 77.2889														
418 28.6150 77.0889 - East 160 193 248 226 D 419 28.6153 77.0886 72 Kundli 197 232 250 249 D 420 28.6708 77.2903 72 Kundli Gharoli Sec-G 187 204 234 239 D 421 28.6683 77.2762 - East 156 217 240 2225 D 422 28.7012 77.2888 54 Hauz Khas Park 196 215 231 227 D 423 28.7164 77.2863 43 Place 198 189 226 227 D 424 28.7054 77.2863 43 Papan Kalan 196 215 225 231 D 424 28.7054 77.2889 34 Papan Kalan 157 186 210 215 D	417	28.0000	77.0951	24	·	241	255	220					257	U
420 28.6708 77.2903 72 Kundli Gharoli Sec-G 187 204 234 239 D 421 28.6683 77.2762 - East 156 217 240 225 D 422 28.7012 77.2888 54 Hauz Khas Park 196 215 231 229 D 423 28.7164 77.2863 43 Place 198 189 226 227 D 424 28.7054 77.2863 43 Place 198 189 226 231 227 D 424 28.7054 77.2863 43 Pappan Kalan 196 215 225 231 D 425 28.6764 77.2889 34 Pappan Kalan 157 186 210 214 D 426 28.6764 77.2889 67 Mayur Vihar, Ph-II, Blk-A 177 173 213 215 D 427 28.6699 77.2704 <td>418</td> <td>28.6150</td> <td>77.0889</td> <td>-</td> <td></td> <td>160</td> <td>193</td> <td>248</td> <td></td> <td></td> <td></td> <td></td> <td>226</td> <td>D</td>	418	28.6150	77.0889	-		160	193	248					226	D
421 28.6683 77.2762 - Across NCT boundary in the East 156 217 240 225 D 422 28.7012 77.2888 54 Hauz Khas Park 196 215 231 0 0 229 D 423 28.7164 77.2863 43 Place 198 189 226 0 227 D 424 28.7054 77.2866 34 Pappan Kalan 196 215 225 0 221 D 425 28.6764 77.2889 34 Pappan Kalan 157 186 210 0 214 D 426 28.6764 77.2889 67 Mayur Vihar, Ph-II, Blk-A 177 173 213 0 0 215 D 427 28.6699 77.2704 67 Mata Sundari Rly Coloney 176 201 221 0 228 D 428 28.5979 77.0510 - East 191 187 236 0 224 249 D 429 28.6806 <td>419</td> <td>28.6153</td> <td>77.0886</td> <td>72</td> <td>Kundli</td> <td>197</td> <td>232</td> <td>250</td> <td></td> <td></td> <td></td> <td></td> <td>249</td> <td>D</td>	419	28.6153	77.0886	72	Kundli	197	232	250					249	D
421 28.6683 77.2762 - East 156 217 240 - - 225 D 422 28.7012 77.2888 54 Hauz Khas Park 196 215 231 - - 229 D 423 28.7164 77.2863 43 Place 198 189 226 - - 227 D 424 28.7054 77.2863 43 Pappan Kalan 196 215 225 - - - 227 D 424 28.7054 77.2889 34 Pappan Kalan 196 215 225 - - - 214 D 425 28.6764 77.2889 34 Pappan Kalan 157 186 210 - - - 214 D 426 28.6764 77.2889 67 Mayur Vihar, Ph-II, Blk-A 177 173 213 - - - 215 D 427 28.6699 77.2704 67 Mata Sundari Rly Coloney 176 201 <td>420</td> <td>28.6708</td> <td>77.2903</td> <td>72</td> <td>Kundli Gharoli Sec-G</td> <td>187</td> <td>204</td> <td>234</td> <td></td> <td></td> <td></td> <td></td> <td>239</td> <td>D</td>	420	28.6708	77.2903	72	Kundli Gharoli Sec-G	187	204	234					239	D
422 28.7012 77.2888 54 Hauz Khas Park 196 215 231 229 D 423 28.7164 77.2863 43 Place 198 189 226 227 D 424 28.7054 77.2863 43 Papan Kalan 196 215 225 231 D 424 28.7054 77.2863 34 Papan Kalan 196 215 225 231 D 425 28.6764 77.2889 34 Papan Kalan 157 186 210 214 D 426 28.6764 77.2889 67 Mayur Vihar, Ph-II, Blk-A 177 173 213 215 D 427 28.6699 77.2704 67 Mata Sundari Rly Coloney 176 201 221 228 D 428 28.5979 77.0510 - East 191 187 236 221 D </td <td></td> <td></td> <td></td> <td></td> <td>Across NCT boundary in the</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>					Across NCT boundary in the									
423 28.7164 77.2863 43 West Block, nr Bhikaji Cama Place 198 189 226 227 D 424 28.7054 77.2566 34 Pappan Kalan 196 215 225 226 231 D 425 28.6764 77.2889 34 Pappan Kalan 196 215 225 28 214 D 426 28.6764 77.2889 67 Mayur Vihar, Ph-II, Blk-A 177 173 213 213 215 D 426 28.6764 77.2889 67 Mayur Vihar, Ph-II, Blk-A 177 173 213 213 215 D 427 28.6699 77.2704 67 Mata Sundari Rly Coloney 176 201 221 221 228 D 428 28.5979 77.0510 - East 191 187 236 228 249 D 429 28.6806 77.1561 33 Vikaspuri Blk-C 161 205 222 0 221 D				-					 	 				
423 28.7164 77.2863 43 Place 198 189 226 Image: Constraint of the system of	422	28.7012	77.2888	54		196	215	231					229	D
424 28.7054 77.2566 34 Pappan Kalan 196 215 225 231 D 425 28.6764 77.2889 34 Pappan Kalan 157 186 210 214 D 426 28.6764 77.2889 67 Mayur Vihar, Ph-II, Blk-A 177 173 213 215 D 426 28.6764 77.2889 67 Mayur Vihar, Ph-II, Blk-A 177 173 213 215 D 427 28.6699 77.2704 67 Mata Sundari Rly Coloney 176 201 221 228 D 428 28.5979 77.0510 - East 191 187 236 249 D 429 28.6806 77.1561 33 Vikaspuri Blk-C 161 205 222 221 D	423	28 7164	77 2862	43		198	189	226					227	п
425 28.6764 77.2889 34 Pappan Kalan 157 186 210 Image: Constraint of the cons				-										
426 28.6764 77.2889 67 Mayur Vihar, Ph-II, Blk-A 177 173 213 Image: Constraint of the second sec														
427 28.6699 77.2704 67 Mata Sundari Rly Coloney 176 201 221 221 228 228 D 428 28.5979 77.0510 - East 191 187 236 236 249 D 429 28.6806 77.1561 33 Vikaspuri Blk-C 161 205 222 0 0 221 D														
428 28.5979 77.0510 - Across NCT boundary in the East 191 187 236 - - 249 D 429 28.6806 77.1561 33 Vikaspuri Blk-C 161 205 222 - - 201 D	426	28.6764	77.2889	67	Mayur Vihar, Ph-II, Blk-A	177	173	213					215	D
428 28.5979 77.0510 - Across NCT boundary in the East 191 187 236 - - 249 D 429 28.6806 77.1561 33 Vikaspuri Blk-C 161 205 222 - - 201 D														
428 28.5979 77.0510 - East 191 187 236 - - 249 D 429 28.6806 77.1561 33 Vikaspuri Blk-C 161 205 222 - - - 249 D	427	28.6699	77.2704	67		176	201	221		 			228	D
429 28.6806 77.1561 33 Vikaspuri Blk-C 161 205 222 Image: Comparison of the state of the stat	120	28 5070	77 0510			101	107	<u>,</u> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					240	п
	-			1										

1									1							1
431	28.6117	77.3103	26	East of Dwarka Sec-12	206	200	211								218	D
432	28.7042	77.3131	66	Shahdara	178	179	213								223	D
433	28.7931	77.0417	34	Nr Palam Village	220	188	207								229	D
434	28.7019	77.1667	25	Sainik Nagar	205	209	236								223	D
435	28.6072	76.8844	34	Dwarka Sec-1											302	D
436	28.5828	76.9311	41	West Punjabi Bagh											217	D
437	28.5324	76.9461	61	Rajiv Gandhi Smriti Van, Nr Zoo											199	D
438	28.7872	77.0164	21	Sanoth	134	158	151	230	192	248	252	267	226	322	300	D
439	28.6264	77.0197	52	Nr MP's Club, Rakabganj	180	238	314	369	343	247	309	328	396	421	346	D
440	28.7072	77.0322	35	Samalka, Nr Kapashera	100	150	198	226	273	258	298	301	301	336	306	D
441	28.8714	77.0833	35	Intl Airport Authority, Nr Mahipalpur	110	185	239	206	216	251	251	315	251	279	307	D
				Intl Airport Authority, Nr												
442	28.8042	77.1094	35	Mahipalpur	154	165	221	216	235	238	336	243	251	331	303	D
443	28.7347	77.0892	26	Dwarka Sec-10	127	194	234	251	216	200	235	314	263	363	332	D
444	28.6250	77.0903	34	Sadar Bazar (Delhi Cantt)											240	D
445	28.5117	77.1083	40	Shalimar Bagh, Pkt-BD											254	D
446	28.8180	77.1744	29	Narela	103	207	226	194	230	206	94	254	304	350	301	D
447	28.7535	77.1653	3	Kair	127	165	216	248	331	368	331	295	352	315	308	D
448	28.6828	77.1615	26	Dwarka Sec-17	125	221	221	281	239	262	216	238	243	176	319	D
449	28.4717	77.1475	4	Jafarpur Kalan											365	D
450	28.6857	77.2159	42	West Patel Nagar			-								307	D
451	28.6645	77.2074	41	New Motinagar, Blk-17											261	D
452	28.6144	77.1763	33	Chaukhandi, nr Hind Nagar											301	D
453	28.5386	77.2092	41	New Motinagar, Blk-B											272	D
454	28.5252	77.2215	41	Lawrence Rd Coloney, Blk- C-7											311	D
455	28.4723	77.1860	51	Gulabi Bagh											208	D
456	28.7250	77.2510	41	Omkar Nagar											180	D
457	28.5811	77.2313	52	Prasad Nagar, Nr E. Patel nagar	137	185	210	230	256	262	258	200	251	320	328	D
458	28.6029	77.2855	26	Dwarka Sec-10	115	158	181	264	270	216	211	292	279	254	206	D
459	28.5325	77.3167	42	Pusa Institute											183	D
460	28.5117	77.1082	66	Karkarduma											269	D
461	28.7534	77.1659	67	Karkarduma											222	D
462	28.8180	77.1744	68	Trans Yamuna, nr Chilla											210	D
463	28.8046	77.1094	60	Rajghat											283	D
464	28.8717	77.0816	59	Shastri Park, BLK-A											215	D
465	28.6030	77.4438	62	Close to Tuglakabad Village											173	D
466	28.7275	77.2515	61	Lajpatnagar, part-II											184	D/E
467	28.6855	77.2159	53	South Ex Part-II											627	С
468	28.6832	77.3290	62	Kalkaji, Blk-D											154	E
469	28.5795	77.2295	43	RK Puram, Sec-8											251	D
470	28.4725	77.1468	43	Anand Niketan, Blk-D											370	С

1	1	1	ĺ		1	1	Ì	1	I	l	1		Í	1	. I
471	28.5822	77.4299	60	Mata Sundari Rly Coloney										488	С
				Satyawati Coloney, Blk-A,											
472	28.6254	77.0790	51	Pkt-A										264	D
473	28.4723	77.1857	51	Karol Bagh, Blk-D, Pkt52										275	D
474	28.6261	77.0205	60	Bapa Nagar										246	D
475	28.7882	77.0150	60	Vigyan Bhawan										262	D
470	20 7042	77 0000	50	Govt Quarters, Nr Gole Market										255	
476 477	28.7043 28.7350	77.0338 77.0897	52 42	Pusa Institute										255 275	D D
477	28.5250	77.2216	34	IGI nr Pappan Kalan										275	D
470	20.3230	77.2210	54											230	
479	28.6562	77.2463	60	West of F.S.Kotla stadium										208	
480	28.7203	77.2306	52	Bangla Saheb Gurudwara										414	С
481	28.5875	77.2581	66	Makki Sarai										178	E
482	28.8570	77.1108	61	Sarai Kale Khan										251	D
483	28.8356	77.0830	61	Lajpat Nagar, Part-IV										281	D
		==		Chanakyapuri, Nr JLN											-
484	28.7163	77.1338	52	Memorial Museum										273	D
485	28.8503	77.0738	62	Pushpa Vihar, Sec-4						-				263	D
486	28.5611	77.1719	53	Siri Fort Sports Complex										296	D
487	28.7073	77.1891	68	Sukhdev Vihar										192	D
488	28.5100	77.2766	53	Aayurvugyan Nagar										281	D
489	28.5676	77.0495	61	Andrews Ganj										241	D
				Mansarover Garden, Blk-											
490	28.5243	77.1569	42	WZ										293	D
491	28.5859	77.4555	54	Saket										256	D
492	28.5283	77.4061	54	Saket										241	D
493	28.6442	77.2064	31	Rohini Sec-5										286	D
494	28.5737	77.4533	60	Ramlila Ground										323	D
495	28.5368	77.4719	26	Dwarka Sec-10										291	D
496	28.6144	77.1106	22	Bawana										212	D
407	20 6444	77 1001		Dilahad Candan, Dily C										242	D
497 498	28.6444 28.5843	77.1091 77.4949	66 65	Dilshad Garden, Blk-C										343 258	D D
498	28.6615	77.1598	60	Bhagirath Vihar Pragati Maidan										238	D
500	28.7302	77.1714	65	Mandoli Extn										209	D
501	28.7392	77.1695	54	Qutub Indl Area										218	D
502	28.7107	77.2113	69	Madanpur Khadar Village										269	D
503	28.7192	77.2145	50	Majlis Park										183	D/E
504	28.7815	77.1793	61	Lajpat Nagar, Part-IV										220	D
				Rohinin Sec-13, nr Vikrant									T		
505	28.7369	77.1673	40	Apartment										198	D
506	28.7619	77.2224	40	Bhalsawa Dairy										183	D/E
															_
507	28.6706	77.2279	34	IGI, nr Dwarka Sec-21										279	D
508	28.6792	77.2920	41	Najafgarh Indl Area										224	D
509 510	28.6733	77.2788	59 34	Civil Lines Dwarka Sec-8										216	D D
510	28.6827	77.3186	54	Dwdika Jel-o				<u> </u>	I		I			215	U

1					1		1		1		
511	28.7292	77.1483	34	Sadh Nagar, Palam coloney						223	D
512	28.7242	77.1106	31	Rohini Sec-25						307	D
513	28.7985	77.0452	31	Rohini Sec-25						235	D
514	28.7708	77.1157	60	Kamla Market						258	D
				Mahaveer Enclave-II, nr							
515	28.5937	77.0587	33	Kailashpuri west						265	D
516	28.6970	77.3099	33	Janakpuri Blk C-3						215	D
517	28.6977	77.2928	33	Janakpuri Blk C-3						201	D
518	28.7603	77.2133	66	Teli Bara						192	D
519	28.6058	77.2078	66	Seelampur				 		273	D
520	28.8202	77.0631	65	South of Gokulpur				 		234	D
521	28.6629	77.0353	65	Nr Kardam Farm, Johripur				 	 _	230	D
522	28.5851	77.4038	58	Khajuri Khas				 		235	D
523	28.6135	77.3271	66	Naveen Shahdara				 		203	D
524	28.6038	77.3372	66	Naveen Shahdara						223	D
525	28.8143	77.4910	59	Seelampur		 		 	 	249	D
526	28.5475	77.1943	26	Dwarka Sec-4						287	D
527	28.5696	77.1837	41	Lawrence Rd Indl Area					_	233	D
				Andha Mughal, Nr Gulabi							-
528	28.5613	77.0728	51	Bagh				 		230	D
529	28.5542	77.0428	67	Dotnorgoni, pr Trilokouri I						227	D
			67 67	Patparganj, nr Trilokpuri-I						227	D
530	28.6188 28.6229	77.3006	65 22	Mandoli						255	D
531 532	28.7974	77.2461 77.2247	40	Bawana Wazirpur Indl Area						255	D
533	28.5355	77.1626	40	JNU						850	B
534	28.4508	77.2094	55	Asola						700	В
535	28.4508	77.1834	55	Suhalpur				 		340	D
536	28.5325	77.1729	44	Jasola						340	D
530	20.3323	77.1729	44	Jasola						340	D
537	28.8117	77.0096	13	Bhawana, Daryapur Kalan						250	D
538	28.6061	76.9893	17	Nazafgarh						240	D
539	28.5894	77.1118	34	Kirbi cantt						245	D
540	28.7503	77.1653	39	Balsava						250	D
541	28.6147	77.3068	67	Ghazipur						212	D
542	28.6089	77.2642	67	Akshar Dham						230	D

Table 8.3 :	Peak frequency and Peak amplification obtained from experimental technique (h/v of
	microtremor) and Indicative No. of stories of building matching with peak frequency

S.N.	Site Location	Latitude	Longitude	Peak frequency (Hz)	Peak amplification factor (ratio)	Indicative No. of stories of building matching with Peak frequency
1	Asola Wildlife FBD	28.4928	77.2425	3.56	2.33	3
2	Rocky Area FBD	28.4873	77.2332	3.59	2.30	3
3	South of Sainik Farm FBD	28.4933	77.2163	1.90	5.11	5,6
4	Rajpur Shitalkunj Farm	28.4847	77.1998	3.32	4.15	3
5	Satwadi	28.4843	77.1857	1.51	5.28	6,7
6	DLF Firm	28.4857	77.1690	1.49	6.19	7,6
7	Gadipur Farm	28.4807	77.1457	3.52	2.74	3
8	Arjungarh	28.4838	77.1252	9.81	1.75	1
9	JJC Ghatozani	28.4967	77.1369	2.08	6.70	5
10	Vatikafarm	28.5004	77.1512	1.73	7.69	5,6
11	Manglapuri	28.4989	77.1678	1.73	8.28	5,6
12	Chhatarpur	28.5017	77.1863	3.30	6.11	3
13	Sainikfarm	28.4996	77.2169	1.03	3.24	10
14	Durga Vihar	28.4994	77.2283	1.64	4.79	6
15	Prem Nagar	28.5030	77.2770	8.05	4.29	1
16	West Suresh Vihar	28.5120	77.3175	3.05	5.57	3
17	NPC Colony	28.5112	77.3027	1.05	3.48	9,10
18	Delhi Adminstration	28.5100	77.2858	8.12	6.50	1
19	Tuglakabad	28.5105	77.2742	7.03	2.16	1
20	Tuglakabad Picnic Hut	28.5118	77.2563	3.52	9.09	3
21	Vayusenabad	28.5125	77.2405	2.47	2.08	4
22	Khanpur	28.5130	77.2260	1.44	4.40	7
23	Anupam Garden	28.5128	77.2085	3.05	6.84	3,4
24	Datta Farm Freedomfighter Viha	28.5148	77.1982	3.64	4.20	3
25	Mandi Masjid Ladosarai	28.5148	77.1852	6.57	8.20	1,2
26	Vasantkunj Sec A	28.5133	77.1677	0.85	4.35	11,12
27	Adjoining Gupta Farm	28.5152	77.1528	3.49	3.73	3
28	Kishangarh	28.5148	77.1315	7.08	1.60	1
29	Rajokari Pahari	28.5133	77.1207	9.91	1.13	1
30	Chawala Farm	28.5182	77.1038	0.68	3.05	15,14
31	Krishna Farm	28.5196	77.0908	0.71	3.09	14

32	Surya Vihar (Sec 21)	28.5188	77.0673	0.66	3.63	15
33	Palam Ganostic Centre	28.5181	77.0586	0.71	3.01	14
34	New Palam Vihar - II	28.5146	77.0071	0.76	3.52	13,14
35	Ragopur Village	28.5245	76.9981	0.68	5.12	14,15
36	Raghuvan Nursery GGN	28.5287	77.0377	0.71	3.12	14
37	Bijwasan	28.5306	77.0580	0.68	3.10	14,15
38	Mange RAm FArm	28.5288	77.0728	0.71	2.97	14
39	Gita Nursery	28.5279	77.0904	0.59	3.75	17
40	Green Retreat	28.5398	77.0943	0.32	4.18	30
41	ICGEB Vasantkunj	28.5247	77.1699	8.67	2.47	1
42	Mehrauli near Qutub Minar	28.5237	77.1835	6.08	7.31	1,2
43	Lado Sarai Quila Rai Pithora	28.5286	77.2019	1.98	8.11	5
44	Modi Hospital Saket	28.5266	77.2148	1.17	6.80	9,8
45	Pushp Vihar Sec 7	28.5307	77.2313	2.83	4.50	3,4
46	Greater Kailash Ph II	28.5307	77.2437	3.76	3.51	3
47	Tuglakabad	28.5235	77.2630	5.64	1.32	2
48	Okhala Industrial Area Ph-II	28.5277	77.2750	8.11	1.55	1
49	Sarita Vihar	28.5272	77.2920	0.66	5.51	15
50	Ali Vihar	28.5227	77.3070	1.12	2.81	9
51	East of Alipur	28.5180	77.3123	2.39	5.77	4,5
52	Zamrudpur	28.5376	77.3140	0.78	4.40	13
53	Kalindikunj	28.5421	77.3095	1.25	3.43	8
54	Sports Complex Jasola	28.5395	77.2901	2.61	6.90	4,3
55	Sanjay Colony Park	28.5383	77.2803	3.27	5.42	3
56	Kalkaji Gupta Apts	28.5385	77.2592	0.66	4.44	15
57	Greater Kailash Encl-I	28.5437	77.2400	2.76	4.66	4,3
58	Sheik Sarai	28.5401	77.2248	1.78	5.94	6,5
59	Bhavishyanidhi Encl	28.5419	77.2104	1.10	4.12	9
60	NCERT	28.5395	77.1961	1.93	4.00	5,6
61	Qutub Institutional Area	28.5397	77.1809	4.98	6.06	2
62	JNU	28.5447	77.1661	7.96	2.17	1
63	Defence Encl Mahipalpur	28.5409	77.1317	0.63	4.70	16,15
64	Rangpuri GGN	28.5460	77.1214	0.90	3.50	11
65	Old Jaipur Road GGN	28.5401	77.0948	0.54	4.56	18,19
66	Pushpanjali Farms G-12	28.5369	77.0728	0.71	3.93	14
67	BIjwasan (near H.P.)	28.5369	77.0561	0.59	4.21	17
68	Borthal - Bamnauli	28.5381	77.0398	0.71	4.74	14

69	Ishapur Khera	28.5377	77.0235	0.68	4.12	14,15
70	Bajghera Village	28.5380	77.0127	0.66	4.19	15
71	North of Kangan Heri	28.5567	76.9993	0.76	2.65	13,14
72	South of Chawala Farm	28.5585	77.0168	0.71	2.62	14
73	East of Dhul Sirs	28.5515	77.0385	0.76	2.81	13,14
74	Dwaraka	28.5545	77.0642	0.73	2.57	14,13
75	Shahbad Muhammadpur	28.5528	77.0745	0.68	2.73	15,14
76	IGI Airport	28.5565	77.0927	0.63	2.48	16,15
77	Nangal Dewat	28.5520	77.1027	0.68	2.21	15,14
78	Import Wear House	28.5523	77.1122	1.20	3.17	8,9
79	East of Mahipalpur	28.5487	77.1477	9.01	1.51	1
80	DDA Flats Munirka	28.5548	77.1797	6.69	5.41	1,2
81	Hauz Khas (Hauz Ali)	28.5539	77.1960	1.07	4.28	9,10
82	Hauz Khas	28.5545	77.2107	1.07	3.69	9,10
83	Shri Fort	28.5538	77.2284	2.93	3.85	3,4
84	Kailash Colony Park	28.5530	77.2570	2.20	5.86	4,5
85	Ajal Bagh, Nur Nagar	28.5563	77.2858	8.03	6.46	1
86	Abul Fazal Encl	28.5563	77.2950	2.64	4.58	4,3
87	Batla House Masjid	28.5622	77.2829	2.56	3.65	4
88	New Friends Colony	28.5671	77.2746	0.83	4.17	12
89	Friends Colony West	28.5647	77.2625	2.88	4.86	3,4
90	Lajpat Nagar	28.5679	77.2435	2.54	3.52	4
91	Defence Colony	28.5685	77.2296	0.98	3.59	10,11
92	AIIMS	28.5684	77.2139	1.10	2.10	9
93	Naroji Nagar	28.5683	77.1928	3.05	5.31	3
94	Vasant Kunj	28.5677	77.1614	3.39	3.17	3
95	Muradabad Pahari	28.5687	77.1532	9.72	1.87	1
96	Police Colony	28.5678	77.1342	6.81	1.63	2,1
97	Dwarka Sector 23 Marble Market	28.5682	77.0668	0.59	3.24	17
98	Dwarka sector 23 Cremation Gd	28.5658	77.0505	0.44	4.79	22,23
99	Dwarka Sector 24	28.5738	77.0472	0.29	5.54	33-35
100	Qutub Vihar	28.5720	77.0308	0.73	2.60	14,13
101	Chhawala Camp	28.5667	77.0040	0.73	2.65	14,13
102	Reola Khanpur	28.5697	76.9880	0.66	2.81	15
103	Paprawat	28.5918	76.9782	0.71	2.47	14
104	Khurd	28.5852	77.0103	0.73	2.72	14,13
105	Goela Dairy	28.5820	77.0238	0.66	2.72	15

106	Dwarka Sector 18	28.5815	77.0372	0.71	2.82	14
107	Dwarka Sector 19	28.5795	77.0537	0.76	2.54	13,14
108	Dwarka Sector 9	28.5818	77.0660	0.68	2.47	14,15
109	Rajnagar II	28.5805	77.0797	0.73	2.77	14,13
110	Pehladpur Palam	28.5808	77.1033	0.71	3.53	14
111	Maudi Line	28.5808	77.1178	0.76	2.59	13,14
112	Subroto Park	28.5787	77.1505	5.18	2.09	2
113	Moti Bagh	28.5827	77.1786	2.78	4.47	3,4
114	Chanakyapuri	28.5821	77.1926	2.29	4.81	4,5
115	Civil Aviation Colony	28.5843	77.2149	1.86	4.67	5,6
116	Pragati Vihar	28.5820	77.2317	1.90	3.65	5
117	Sidharth Ext	28.5809	77.2626	0.98	3.63	10,11
118	Vasundhara Enclave Noida	28.5900	77.3081	0.56	3.97	18,17
119	Nangli	28.5999	77.2804	0.61	3.08	16,17
120	Delhi Golf Club	28.5936	77.2392	0.71	2.89	14
121	Shyam Prasad Vidyalaya	28.5969	77.2254	0.88	3.48	11,12
122	Tuglak Crescent	28.5950	77.2120	1.05	4.46	10
123	Nehru Park	28.5917	77.1920	4.27	3.59	2,3
124	Jesis Mery College	28.5960	77.1804	3.27	3.08	3
125	Saint Martin School	28.5962	77.1460	2.37	4.04	4,5
126	Kaval Lines	28.5953	77.1294	0.68	2.63	15,14
127	Sadar Bazar	28.5953	77.1186	0.71	3.17	14
128	Indira Park	28.5969	77.1023	0.78	2.64	13,12
129	Mahavir Encl II	28.5938	77.0838	0.66	2.69	15
130	Dwarka Sector 6	28.5942	77.0697	0.61	2.89	16,17
131	Dwarka Sector 12	28.5921	77.0409	0.66	2.78	15
132	Dwarka MIG Flats	28.5933	77.0309	0.66	3.56	15
133	Shyam Vihar	28.5893	77.0080	0.66	3.08	15
134	Shyam Encl Papravat	28.5900	76.9838	0.24	2.53	40-41
135	Nazafgarh	28.6097	76.9921	0.68	2.32	14,15
136	West of Kakravla	28.6070	77.0071	0.73	2.81	14,13
137	Bharat Vihar	28.6097	77.0250	0.66	2.95	15
138	Netaji Subhash Inst of Tech	28.6107	77.0390	0.66	3.42	15
139	Jain Colony	28.6103	77.0546	0.32	3.69	30
140	Mahavir Encl III	28.6087	77.0702	0.66	4.26	15
141	Dabri	28.6091	77.0854	0.32	3.06	30
142	Janakpuri Inst Area	28.6104	77.1026	0.63	3.66	16,15

143	Nangal	28.6082	77.1209	0.66	2.44	15
144	Kirby Place	28.6109	77.1325	0.37	2.66	27
145	PIgri Farm	28.6086	77.1529	6.76	4.95	1,2
146	Kamraj Road	28.6071	77.2067	5.79	6.24	2
147	UPSC	28.6054	77.2255	0.88	5.01	11,12
148	Delhi High Court	28.6115	77.2376	0.93	3.23	11,10
149	Kali Basti	28.6116	77.2543	1.12	3.65	9
150	Akshardham	28.6166	77.2789	0.68	3.21	14,15
151	Hindu Cultivated Land	28.6051	77.2878	0.66	3.32	15
152	Mayur Vihar Ph-I	28.6054	77.3054	1.39	3.48	7,8
153	Trilok Puri	28.6103	77.3148	0.71	3.64	14
154	Kondli	28.6076	77.3328	0.78	4.18	13,12
155	Indl Area near Mullapur Colony	28.6205	77.3328	0.51	3.13	19,20
156	Khichripur	28.6210	77.3126	0.73	3.96	13,14
157	Vinod Nagar West	28.6226	77.2967	1.49	4.89	7
158	Ganesh Nagar	28.6360	77.2867	1.17	4.10	9,8
159	Center Secretariate	28.6203	77.2011	6.76	1.10	1,2
160	Narayana	28.6230	77.1342	1.05	2.94	10,9
61	Nanakpura	28.6227	77.1175	0.71	2.54	14
162	Nari Niketan Tihar Jail	28.6213	77.1025	0.63	2.89	16,15
163	Poshangipur	28.6223	77.0873	0.66	2.70	15
164	Janakpuri	28.6215	77.0735	0.71	2.40	14
165	Mohan Garden	28.6212	77.0548	0.66	2.42	15
66	Sevak Park Extension	28.6212	77.0428	0.73	2.80	14,13
67	Kakrala Mor	28.6223	77.0258	0.73	2.85	14,13
168	Nangli Sakrasti (West)	28.6218	77.0070	0.66	2.56	15
169	Nangli Sakrasti	28.6265	76.9923	0.12	3.19	80-85
170	Dichaon Kalan	28.6397	76.9898	0.71	2.42	14
171	West of Baprola	28.6403	77.0013	0.66	2.46	15
172	Baprola	28.6400	77.0097	0.30	2.49	33-35
173	Vijay Vihar	28.6345	77.0412	0.61	2.62	16,17
174	Hast Sol	28.6340	77.0555	0.66	1.99	15
175	Vikas Puri	28.6338	77.0735	0.63	2.29	16,15
176	Ganesh Nagar	28.6350	77.0897	0.98	2.50	10,11
177	Ashok Nagar	28.6352	77.1018	0.81	2.63	12,13
178	Subhash Nagar Mahila Park	28.6360	77.1187	0.68	2.74	15,14
179	Kirti Nagar Wear Housing	28.6355	77.1338	0.71	3.32	14

180	IARI Colony	28.6348	77.1478	6.08	4.23	2,1
181	Push Institute	28.6369	77.1624	1.07	3.98	9,10
182	Sindhi Sch New Rajindernagar	28.6354	77.1787	7.74	1.86	1
183	Telegraph Sq Panchkuya Road	28.6360	77.2072	4.15	6.35	2,3
184	Minto Road	28.6358	77.2249	1.90	3.55	5,6
185	Maulana Azad Medical College	28.6363	77.2398	2.20	6.60	4,5
186	Gandhi Darshan	28.6367	77.2509	1.90	4.31	5,6
187	Vishwakarma Park	28.6432	77.2665	0.81	3.98	12,13
188	Guru Nanak Nagar	28.6393	77.2834	0.68	3.14	14,15
189	Madhu Vihar	28.6386	77.3013	1.00	4.62	10
190	Kinoria Steels	28.6482	77.3188	0.66	4.05	15
191	Karkar Duma	28.6482	77.3053	1.29	4.63	8
192	Jagat Pur	28.6464	77.2891	0.95	3.64	10,11
193	Gita Colony	28.6480	77.2731	1.07	4.07	9,10
194	Pantoon Bridge	28.6512	77.2656	1.44	4.15	7
195	Parda Bagh	28.6494	77.2423	3.03	7.01	3
196	Kucha Pandit	28.6491	77.2232	3.22	5.56	3,4
197	Jhandewalan	28.6472	77.2062	8.84	3.11	1
198	Karolbagh	28.6501	77.1901	1.03	3.28	10
199	East Patel Nagar	28.6472	77.1777	8.91	6.06	1
200	New Ranjit Nagar	28.6491	77.1584	0.78	4.07	13,12
201	Kirtinagar Ind Area (Bajaj Aut	28.6517	77.1443	0.85	3.09	11,12
202	Ramesh Nagar	28.6508	77.1286	0.71	3.29	14
203	Tagore Garden	28.6500	77.1135	0.71	2.83	14
204	Vishnu Garden	28.6543	77.0972	0.59	3.27	17
205	Gurunanak Nagar	28.6507	77.0847	0.63	2.80	16,15
206	Himgiri Encl	28.6484	77.0689	0.66	2.75	15
207	Nilothi	28.6526	77.0482	0.63	2.66	16,15
208	West of Ranohalla	28.6514	77.0322	0.71	3.09	14
209	Tilangpur	28.6445	77.0140	0.66	2.68	15
210	East of Dichhaon Kalan	28.6421	76.9969	0.63	2.65	16,15
211	North of Dichhaon Kalan	28.6489	76.9819	0.56	3.78	18,17
212	Near Neelwal	28.6645	76.9801	0.63	2.74	16,15
213	Hiran Kudna	28.6660	77.0143	0.68	2.89	14,15
214	Bakriwala	28.6580	77.0175	0.66	2.94	15
215	Laxmi Park	28.6637	77.0462	0.73	2.58	14,13
216	Adhyapak Nagar	28.6645	77.0611	0.56	3.11	18,17

217	Nihal Vihar	28.6627	77.0737	0.61	3.58	16,17
218	Jivan Niketan	28.6635	77.0856	0.61	2.81	16,17
219	Pschim Vihar	28.6646	77.1016	0.73	2.64	14,13
220	Pschimpuri	28.6631	77.1166	0.73	3.46	14,13
221	Panjabi Bagh West	28.6626	77.1291	0.76	2.87	13,14
222	New Motinagar	28.6644	77.1434	0.76	3.05	13,14
223	Nazafgarh Rd Ind Area	28.6629	77.1591	1.15	3.14	9,8
224	Bara Hindu Rao	28.6617	77.2033	1.59	2.98	6,7
225	Swami Hariharnand School	28.6633	77.2397	2.54	7.81	4
226	Rajgarh Colony School	28.6635	77.2729	0.68	3.98	14,15
227	Vishwash Nagar	28.6625	77.2874	1.05	3.56	9,10
228	Yojana Vihar	28.6638	77.3088	0.78	2.59	13,12
229	Jhilmil Industrial Area	28.6748	77.3191	0.78	2.50	13,12
230	Salimpur Housing Complex	28.6750	77.2601	1.64	4.22	6
231	Saraswati Kunj	28.6772	77.2232	2.64	7.22	4,3
232	Malkaganj	28.6754	77.2099	9.81	2.81	1
233	Roshan Ara club	28.6759	77.1943	0.88	3.72	11,12
234	Shastri Nagar	28.6761	77.1760	0.93	2.87	11,10
235	Deva Ram Park	28.6754	77.1640	0.76	2.69	13
236	Rampur Electricity Colony	28.6741	77.1466	0.78	2.53	13,12
237	Shakur Vasti	28.6770	77.1342	0.71	2.68	14
238	Pschim Ext	28.6753	77.1167	0.71	2.55	14
239	Mianawali Nagar DAV Sch	28.6760	77.0856	0.63	2.52	16,15
240	Hanuman Encl	28.6765	77.0693	0.23	2.63	40-45
241	Kamruddin Nagar	28.6775	77.0544	0.73	2.89	14,13
242	Arvind Enclave	28.6769	77.0461	0.49	5.47	20,21
243	Mundika Village	28.6746	77.0323	0.51	4.84	19,20
244	Mundika	28.6788	77.0143	0.66	2.66	15
245	Hiran Kudna Morh	28.6811	77.0026	0.56	2.71	18,17
246	Jafarpur	28.6793	76.9845	0.68	2.40	14,15
247	Ghevara	28.6925	76.9953	0.61	2.66	16,17
248	East of Ghevra	28.6906	77.0131	1.22	1.58	8,9
249	Mundika Ext	28.6927	77.0271	0.95	2.22	10,11
250	Hind Vihar	28.6895	77.0414	0.51	5.88	19,20
251	Premnagar III Laxmi Vihar	28.6937	77.0475	0.34	5.37	30
252	Prem Nagar III	28.6907	77.0560	0.29	8.71	33-35
253	Sultanpuri (Women Trg Centre)	28.6900	77.0686	0.34	2.83	29

254	Mangole Puri	28.6909	77.0860	0.37	3.43	27
255	Nava Sena Apartments	28.6894	77.1019	0.29	4.05	33-35
256	Pushpanjali	28.6918	77.1173	0.29	3.71	33-35
257	Shant Nagar	28.6910	77.1300	0.68	2.76	15,14
258	Shakur Pur	28.6905	77.1472	0.88	2.45	11,12
259	Ashok Vihar	28.6890	77.1645	1.42	3.55	7
260	Deep Enclave	28.6902	77.1773	0.15	4.75	65-70
261	DTC Colony	28.6907	77.1936	1.34	4.10	7,8
262	University Campus	28.6898	77.2148	1.73	4.59	6,5
263	Khyber Pass	28.6915	77.2237	5.91	5.74	2
264	Kartar Nagar	28.6892	77.2562	1.34	2.73	7,8
265	Maujpur	28.6902	77.2745	1.98	6.13	5
266	Jyoti Colony	28.6899	77.2955	1.90	4.05	5,6
267	GTB staff Colony	28.6898	77.3077	0.90	3.29	11
268	Prem Nagar	28.6879	77.3217	0.68	2.79	14,15
269	East of Timarpur	28.7043	77.2334	3.22	9.43	3
270	Delhi Admin Flats Timarpur	28.7043	77.2243	9.08	3.55	1
271	Police Colony M Town	28.7011	77.1996	3.27	5.64	3
272	Lalbagh	28.7003	77.1874	0.68	2.14	14,15
273	Shalimar Bagh	28.7007	77.1748	0.76	3.01	13
274	Purvi Pitampura	28.7025	77.1482	0.76	2.58	13
275	Daxini Pitampura	28.7040	77.1372	0.73	2.83	14,13
276	Rohini Sector 8 (Advance Tech)	28.7031	77.1178	0.42	2.76	23,24
277	Rohini Sec 3 School	28.7045	77.1013	0.61	2.75	16,17
278	Aman Vihar	28.7024	77.0670	0.63	2.61	16,15
279	Pratap Vihar	28.7032	77.0582	0.29	2.81	33-35
280	Shish Mahal Encl	28.7018	77.0400	0.34	6.14	29
281	Rani Kheda	28.7058	77.0283	0.71	2.63	14
282	Rasulpur	28.7137	77.0084	0.61	2.42	16,17
283	Nizampur	28.7137	76.9930	0.63	2.89	16,15
284	South of Ladpur	28.7268	76.9930	0.71	2.88	14
285	SW of Kanjhavla	28.7256	77.0118	0.39	6.95	25,26
286	Veterinary Hospital	28.7241	77.0292	0.32	2.38	30
287	Shyam Encl	28.7153	77.0442	0.27	3.53	35-40
288	Dhur Enclave	28.7258	77.0548	0.37	3.40	27
289	Rohini Sector 21	28.7162	77.0705	0.73	2.44	14,13
290	Harshdev Colony	28.7164	77.0851	0.54	2.95	18,19

291	Rithala	28.7157	77.0998	0.34	2.66	29
292	Rohini Sec 12 Picnic Hut	28.7323	77.1187	0.39	1.88	25,26
293	Prashant Vihar	28.7166	77.1338	0.61	2.58	16,17
294	South of Haiderpur	28.7199	77.1474	0.66	2.40	15
295	Navin Orchard	28.7175	77.1625	0.73	2.19	13,14
296	Majlis Park	28.7193	77.1747	0.71	7.57	14
297	Coronation Piller Jal Board	28.7211	77.1938	0.27	3.69	35-38
298	Nirankari Colony School	28.7165	77.2085	0.63	10.90	16,15
299	Gopal Pur	28.7187	77.2252	0.95	2.49	10,11
300	Wazirabad	28.7206	77.2332	1.73	3.71	5,6
301	Sonia Vihar	28.7207	77.2543	1.39	3.24	7,8
302	Johirpur	28.7164	77.2863	0.93	8.25	11,10
303	Jharoda Mazra Buradi	28.7307	77.2116	2.37	6.06	4,5
304	Nursery Burari	28.7447	77.1963	0.66	2.39	15
305	North of Jahangirpuri	28.7293	77.1836	0.73	2.93	13,14
306	Jahangirpuri	28.7311	77.1640	0.68	2.44	14,15
307	Ravi Das Ashram	28.7290	77.1490	0.71	2.33	14
308	Shivam Apartments	28.7305	77.1340	0.29	2.49	33-35
309	Rohini Sector II (opp police s	28.7296	77.1177	0.61	2.21	16,17
310	Rohini Sector II(cremation grd	28.7327	77.1054	0.68	2.38	15,14
311	Rohini Sector-24 Pocket-26	28.7307	77.0877	0.49	5.07	20,21
312	Begam Vihar Extension	28.7298	77.0706	0.71	2.39	14
313	Jain Nagar, Qutubgarh Road	28.7300	77.0559	0.37	6.28	27
314	Majri, Qutubgarh Road	28.7272	77.0418	0.44	5.26	22,23
315	Karola Shiv Vihar	28.7276	77.0275	0.32	6.26	30
316	Kanjhawala Indl Estateillage F	28.7290	77.0097	0.34	8.39	29
317	Ladpur Village Shahuda Rd	28.7264	76.9937	0.34	8.83	29
318	Ladpur	28.7477	76.9838	0.49	2.81	20,21
319	West of Chandpur	28.7498	76.9971	0.34	2.00	29
320	Kanjhavla North	28.7463	77.0155	0.37	2.31	27
321	North Karala	28.7479	77.0375	0.34	3.66	29
322	South of Puth Khurd	28.7470	77.0526	0.27	3.54	35-40
323	Prahlad Vihar	28.7458	77.0697	0.51	2.70	19,20
324	Prahlad Vihar	28.7440	77.0849	0.34	3.95	29
325	Rohini Sector 26	28.7421	77.1042	0.29	4.47	33-35
326	Rohini Sec 17	28.7438	77.1189	0.63	3.26	16,15
327	Suraj Park	28.7430	77.1356	0.59	3.02	17

328	Samaypur	28.7430	77.1511	0.51	2.55	19,20
329	North of Mukandapur	28.7437	77.1821	1.10	2.34	9
330	Gali No. 29 Santnagar	28.7490	77.1969	0.20	4.71	50?
331	NE of Milan Vihar	28.7439	77.2090	0.56	3.38	18,17
332	Jagatpur	28.7440	77.2254	0.93	2.39	11,10
333	Loni Police Chaowki	28.7103	77.2903	1.34	4.41	7,8
334	Buradi Village	28.7604	77.2043	0.42	2.26	23,24
335	North of Gaidiepur	28.4823	77.1601	1.68	5.64	6
336	West of Chhattarpur	28.4860	77.1764	1.51	4.86	6,7
337	Gautam Farm Chhattarpur Road	28.4943	77.1868	2.12	6.48	4,5
338	Rajpur Khurd Extn (Jungle)	28.4878	77.1954	0.66	11.54	15
339	South of Ayanagar	28.4760	77.1444	0.76	2.97	13,14
340	Bandh Road Chandanhul	28.4736	77.1822	1.37	5.50	7,8
341	Mandir Road Junapur	28.4566	77.1518	0.73	2.98	14,13
342	Asola Fathepur Beri	28.4582	77.1864	2.03	6.04	5
343	South of Asola	28.4507	77.1885	1.42	3.90	7
344	Dadronwala Johr	28.4534	77.2124	3.05	3.14	3
345	Mandi Valley Haryana Border	28.4460	77.1361	3.12	2.97	3
346	Asthal Mandir near Dera More	28.4450	77.1802	1.98	4.93	5
347	Dhakuwala Village near Shiv Ma	28.4432	77.2064	3.49	3.25	2,3
348	Jatonwala Johr (Forest Area)	28.4451	77.2252	0.83	3.82	12
349	Dera Village	28.4366	77.1731	3.66	3.36	3
350	Bhatibas Village	28.4295	77.1872	5.08	2.85	2
351	South West of Jhatikra Village	28.5055	76.9498	0.66	3.61	15
352	Jhatikra Village (near school)	28.5249	76.9653	0.68	5.67	14,15
353	Ghummenhera (Community Centre)	28.5323	76.9191	0.61	4.48	16,17
354	Rawta Village (Chalibpur Road)	28.5227	76.8976	0.68	5.54	14,15
355	West of Sarang	28.5380	76.8733	0.68	3.60	14,15
356	Sarangpur	28.5420	76.8905	0.61	3.35	16,17
357	Ghumonhera	28.5393	76.9249	0.56	4.57	18,17
358	Shikarpur	28.5326	76.9513	0.61	3.78	16,17
359	Badosra Road Kanganheri	28.5394	76.9877	0.59	3.49	17
360	West of Kangaheri	28.5524	76.9740	0.61	4.11	16,17
361	North of Daulatpur	28.5503	76.9568	0.66	4.50	15
362	Hasanpur Village	28.5550	76.9416	0.59	7.51	17
363	West of Hasanpur	28.5548	76.9267	0.61	4.04	16,17
364	Daryapur Khurd	28.5523	76.9149	0.59	4.23	17

365	Malakpur Village	28.5543	76.9009	0.59	3.12	17
366	East of Dhansa	28.5526	76.8861	0.61	4.37	16,17
367	Dhansa Village	28.5554	76.8627	0.46	9.49	21,22
368	West of Dhansa Village	28.5558	76.8545	0.51	3.28	19,20
369	East of Dhansa Border	28.5623	76.8471	0.54	4.16	18,19
370	North of Airforce Station	28.5690	76.8707	0.68	6.32	14,15
371	West of Ojwah Village	28.5666	76.8916	0.61	3.17	16,17
372	Ojwah Village Cremation Ground	28.5643	76.9110	0.56	3.50	18,17
373	West of Kharkhari Round	28.5639	76.9309	0.51	3.15	19,20
374	North of Kharkhari Round	28.5654	76.9406	0.59	4.47	17
375	West of Pandwala Kalan	28.5681	76.9565	0.63	4.51	16,15
376	East of Pandwala Kalan	28.5653	76.9744	0.61	2.83	16,17
377	RE Reola Village Cre'tion grou	28.5681	76.9848	0.66	4.28	15
378	South of Paptavat	28.5851	76.9773	0.61	4.05	16,17
379	South of Kharkhari Naher	28.5788	76.9667	0.59	5.33	17
380	Hans Nagar	28.5740	76.9474	0.56	4.36	18,17
381	Khera Dabar	28.5803	76.9346	0.51	11.37	19,20
382	Samaspur Khalsa	28.5783	76.9106	0.61	3.34	16,17
383	West of Samaspur	28.5793	76.8965	0.54	3.67	18,19
384	Qazipur	28.5767	76.8771	0.59	5.22	17
385	Isapur Cremation Ground	28.5774	76.8596	0.54	3.16	18,19
386	West of Bakargarh	28.5914	76.8744	0.54	3.71	18,19
387	Mira School Bakargarh	28.5929	76.8992	0.61	3.42	16,17
388	West of Jaffarapur	28.5919	76.9063	0.76	6.72	13,14
389	Jaffarpur	28.5927	76.9187	0.59	3.34	17
390	Sureda Village	28.5952	76.9356	0.59	3.08	17
391	West of Khekhari	28.5902	76.9552	0.59	4.41	17
392	Kheara Village	28.5958	76.9728	0.59	3.56	17
393	Prem Nagar	28.6091	76.9775	0.68	2.85	14,15
394	Gopal Nagar	28.6120	76.9665	0.76	2.83	13,14
395	Mitrao	28.6101	76.9486	0.61	2.67	16,17
396	West of Mitrao	28.6069	76.9274	0.54	3.09	18,19
397	East of Mandela	28.6094	76.9131	0.56	3.58	18,17
398	Mundela Village	28.6097	76.8931	0.61	3.96	16,17
399	North of Bagargarh	28.6017	76.8763	0.59	3.63	17
400	South of Laskar	28.6121	76.8532	0.56	4.96	18,17
401	Mandela Khurd	28.6175	76.8887	0.51	2.97	19,20

402	Kair Village	28.6239	76.9214	0.54	3.47	18,19
403	Suralhpur Road Najafgarh	28.6213	76.9592	0.59	3.95	17
404	Dichaon Kalan	28.6198	76.9781	0.59	4.06	17
405	CRP Camp Jharoda Road	28.6369	76.9605	0.56	3.14	18,17
406	West of Jharoda Village	28.6476	76.9456	0.61	3.19	16,17
407	Tikri Kalan Road	28.6661	76.9557	0.54	3.71	18,19
408	South of Tikri Kalan	28.6784	76.9659	0.54	4.99	18,19
409	Baba Haridas Colony	28.6918	76.9639	0.59	4.20	17
410	Nizampur Delhi	28.7145	76.9563	0.59	4.35	15
411	Sauda Village	28.7126	76.9820	0.61	5.11	16,17
412	Garhi Rindhaula School	28.7308	76.9676	0.61	3.33	16,17
413	Jaunti Village (Ladpur Road)	28.7451	76.9757	0.59	3.19	17
414	Kanaunda Jaunti Road	28.7522	76.9554	0.68	6.56	14,15
415	Jonti-Jhimarpur Road	28.7584	76.9872	0.63	4.53	16,15
416	Sultanpur Kanjawala Road	28.7666	77.0208	0.61	4.55	16,17
417	Puth Khard-Begumpur Road (Kach	28.7605	77.0505	0.68	4.12	14,15
418	Pahladpur Dispensary	28.7492	77.0889	0.56	2.57	18,17
419	Shabad Dairy (North Side)	28.7491	77.1039	0.34	3.53	29
420	Swaroop Nagar	28.7531	77.1550	0.51	3.82	19,20
421	Baba Kathia Ashram	28.7555	77.1712	0.32	5.23	30
422	Kamalpur	28.7538	77.1897	0.54	4.95	18,19
423	South of Burari	28.7556	77.2025	0.54	3.60	18,19
424	West of Shubhpur-1	28.7481	77.2371	0.32	5.55	30
425	West of Shubhpur-2	28.7502	77.2467	1.29	3.67	8
426	Burari East	28.7676	77.2056	0.51	6.88	19,20
427	Shankarpura	28.7639	77.1918	0.51	3.28	19,20
428	Nathu Colony	28.7661	77.1783	0.54	3.54	18,19
429	Kushak Khurd	28.7649	77.1625	0.59	3.19	17
430	Akashwani Nangli	28.7703	77.1416	0.63	2.16	16,15
431	Khera Kalan	28.7688	77.1127	0.49	2.99	20,21
432	Rohini Sec-27	28.7633	77.0978	0.32	4.20	30
433	SE of Puth Khurd	28.7560	77.0668	0.56	2.86	18,17
434	Sultanpur Dabas(South Side)	28.7602	77.0398	0.68	3.50	14,15
435	Jhimarpura-Majra Road	28.7685	76.9900	0.39	4.63	25,26
436	South Khor-Panjab	28.7712	76.9596	0.46	2.67	21,22
437	Khor-Panjab-Ladrawan Road	28.7815	76.9550	0.59	4.57	17
438	Majra-Jathkhot Road	28.7782	76.9853	0.73	2.83	14,13
439	Kanjawala Bawana Road	28.7814	77.0264	0.71	7.55	14
-----	-------------------------------	---------	---------	------	-------	-------
440	North of Puth Khurd	28.7766	77.0475	0.32	4.32	30
441	West of Kharakhurd	28.7771	77.0934	0.49	3.15	20,21
442	Kher Kalan & Khurd	28.7743	77.1031	0.54	3.57	18,19
443	Bhudapur	28.7819	77.1360	0.51	3.25	19,20
444	Nangli Puna East	28.7806	77.1541	0.49	2.89	20,21
445	East of Kush??	28.7771	77.1712	0.46	4.12	21,22
446	Ebrahimpur East	28.7777	77.1865	0.37	3.64	27
447	Burari North	28.7764	77.1972	0.61	3.94	16,17
448	Yamuna West	28.7827	77.2050	0.34	10.17	29
449	Pusta	28.7904	77.1937	0.59	4.33	17
450	East of Makhmalpur	28.7901	77.1661	0.61	3.47	16,17
451	Zindapur East	28.7936	77.1565	0.49	3.98	20,21
452	Jindpur	28.7964	77.1465	0.44	3.77	22,23
453	Alipur Govt School	28.7972	77.1309	0.51	2.32	19,20
454	SW of Alipur	28.7946	77.1118	0.61	4.32	16,17
455	South Halambi Khurd	28.7919	77.0968	0.32	4.44	30
456	South of Bawana	28.7843	77.0415	0.56	3.12	18,17
457	Nangal-Thakran Prempiyau Road	28.7860	77.0163	0.66	3.33	15
458	Jatkhor Village	28.7907	76.9747	0.51	4.58	19,20
459	Qutubgarh Sohti Road	28.8043	76.9609	0.56	3.82	18,17
460	Wazirpur-Kateora Road	28.8043	76.9820	0.66	3.82	15
461	North of Bawana	28.8079	77.0227	0.56	3.49	18,17
462	NE of Bawana	28.7903	77.0736	0.32	3.63	30
463	Bawana Indl Area	28.8001	77.0814	0.32	2.98	30
464	West of Halambi Kalan	28.8031	77.0928	0.32	5.14	30
465	Halambi Kalan	28.8056	77.1093	0.46	2.57	21,22
466	Alipur East	28.8062	77.1390	0.32	8.34	30
467	Bankoli SE	28.8051	77.1509	0.44	2.59	22,23
468	Mukhmalpur West	28.8042	77.1654	0.49	3.41	20,21
469	Mohammadpur	28.8028	77.1861	0.49	3.69	20,21
470	Sungorpur	28.8166	77.2096	0.49	4.43	20,21
471	Tiggipur South	28.8193	77.1875	0.56	3.30	18
472	Baktawarpur South	28.8183	77.1923	0.49	3.40	20,21
473	Triveni Colony	28.8171	77.1618	0.54	3.98	18,19
474	Bankoli North	28.8199	77.1428	0.49	3.07	20,21
475	Sahpur Gari	28.8182	77.1128	0.34	2.71	29

476	West of Sahpur	28.8178	77.1004	0.56	2.79	18,17
477	NW of Sanoth	28.8173	77.0690	0.51	6.82	19,20
178	GRPF Camp Ghoga	28.8170	77.0390	0.51	2.48	19,20
179	Dariyapur Kalan	28.8183	77.0159	0.68	3.59	14,15
80	Mungashpur	28.8217	76.9717	0.46	8.27	21,22
81	Hareol -Chandi Road	28.8213	77.0052	0.61	3.19	16,17
82	Hareol Village(North Side)	28.8387	77.0075	0.56	3.85	18,17
83	East of Ghoga	28.8287	77.0666	0.59	3.11	17
84	West of Bhorgarh	28.8296	77.0899	0.61	3.19	16,17
85	East of Tirki	28.8327	77.1236	0.59	2.77	17
86	Hamidpur NW	28.8350	77.1349	0.32	3.39	30
87	Hamidpur North	28.8347	77.1517	0.42	3.23	23,24
88	Tajpur South	28.8305	77.1653	0.66	2.83	15
89	Garhi Mazra	28.8339	77.1838	0.54	3.13	18,19
90	Jhangola	28.8353	77.2019	0.59	3.44	17
91	Gobind Colony	28.8374	77.2168	0.61	3.80	16,17
92	Polla Mandir	28.8500	77.2083	0.32	3.33	30
93	Palla East	28.8463	77.1883	0.32	3.68	30
94	Tajpur North	28.8446	77.1744	0.32	3.84	30
95	Krishnanagar	28.8554	77.1069	0.56	2.37	18,17
96	East of Sangola	28.8433	77.1321	0.32	4.04	30
97	West of Sangola	28.8462	77.1195	0.32	3.64	30
98	Narela Sec-10	28.8466	77.1017	0.32	4.37	30
99	Narela Mandi	28.8397	77.0906	0.32	4.65	30
00	North of Ghoga	28.8420	77.0490	0.30	2.91	33-35
01	North of Lampur	28.8575	77.0568	0.30	5.62	32,33
02	Narela NE	28.8644	77.0918	0.32	2.79	30
03	Narela Sec-5	28.8638	77.1005	0.32	3.14	30
04	NE Singo Village	28.8583	77.1361	0.49	2.77	20,21
05	Mamurpur	28.8567	77.1159	0.32	2.66	30
06	Safaibad South	28.8684	77.0837	0.32	3.02	30
07	JNU New Campus	28.5519	77.1693	4.86	3.12	2
08	Vasant Kunj B2	28.5233	77.1619	1.03	5.82	9,10
09	Budha Jayanti Park	28.6142	77.1761	9.28	2.84	1
10	Rajendra Nagar R-Block (Jungle	28.6300	77.1718	0.88	5.23	11,12
11	Tis Hazari Court	28.6679	77.2097	9.01	1.45	1

XXXVI

S.N.	Lat (Deg)	Long (deg)	Sheet	Locality name	Engineering Bedrock Depth	Peak Frequency (FMPF)	Peak Amplification
1	28.6247	76.9144	3	Kair	71	1.7	10.5
2	28.6186	76.8843	3	Mandhela Khurd	85	1.5	11.6
3	28.6128	76.8972	3	Mandhela Kalan	90	1.5	13.2
4	28.6128	76.9158	3	Kair	89	1.5	15.4
5	28.6075	76.8862	3	Mandhela Kalan	89	1.5	13.8
6	28.6028	76.9000	3	Mandhela Kalan	87	1.6	15.4
7	28.6029	76.9149	3	Jafarpur Kalan	82	1.6	14.9
8	28.5953	76.8871	4	Baqargarh	98	1.4	14.9
9	28.5591	76.9028	4	Ujwa	85	1.7	16.1
10	28.5991	76.9198	4	Jafarpur Kalan	88	1.5	13.1
11	28.5766	76.8839	4	Quazipur	90	1.5	14.8
12	28.5751	76.9009	4	shamaspur Khalsa	84	1.5	17.1
13	28.5798	76.9129	4	Ujwa	109	1.3	14.6
14	28.5647	76.8853	4	Quazipur	90	1.5	16.4
15	28.5654	76.9111	4	Ujwa	87	1.5	12.3
16	28.5509	76.9115	4	Daryapur Khurd	98	1.4	12.5
17	28.8188	76.9738	6	Mungashpur	104	1.5	13.8
18	28.8111	76.9528	6	Qutubgarh	95	1.2	10.4
19	28.7961	76.9515	7	Qutubgarh	71	1.8	14.1
20	28.7673	76.9632	7	Khor Punjab	83	1.6	15.8
21	28.7576	76.9466	7	Jonti	78	1.6	13.3
22	28.7486	76.9623	8	Jonti	86	1.4	11.8
23	28.7203	76.9658	8	Nizampur Rashid	71	1.7	13.7
24	28.6923	76.9623	9	Tikri Kalan	63	2.1	14.4
25	28.6736	76.9650	9	Tikri Kalan	109	1.2	14.2
26	28.6816	76.9744	9	Tikri Kalan	84	1.4	14.2
27	28.6653	76.9494	9	Jharoda Kalan	105	1.3	14.3
28	28.6514	76.9342	9	Jharoda Kalan	109	1.2	14.6
29	28.6546	76.9598	9	Jharoda Kalan	84	1.5	13.5
30	28.6437	76.9574	10	Jharoda Kalan	90	1.5	14.5
31	28.6048	76.9573	10	Mitraon	99	1.5	16.3
32	28.6161	76.9300	10	Kair	93	1.4	14.0
33	28.6167	76.9592	10	Mitraon	87	1.3	10.9
34	28.6306	76.9478	10	Surakhpur	81	1.5	15.1
35	28.6318	76.9607	10	Najafgarh	107	1.2	13.6
36	28.5383	76.9818	12	Kangan heri	62	1.7	14.6
37	28.8014	77.0240	13	Nangal Thakuran	115	1.6	14.1
38	28.8006	76.9821	13	Katewara	106	1.3	14.8
39	28.8025	76.9981	13	Bajidpur Thakran	94	1.4	13.4
40	28.7903	76.9771	14	Khorjat	75	1.6	12.5
41	28.7612	76.9753	14	Chatesar	82	1.5	14.8
42	28.7880	77.0151	14	Nangal Thakuran	78	1.6	14.1
43	28.7542	77.0071	14	Budhanpur	102	1.3	15.0

Table 8.5: Peak Frequency (First Mode) and Peak Amplification factor for the soil above Engineering Bedrock, derived from Numerical technique

XXXVII

66

107

1.8

1.3

12.0

15.0

44

28.7503

45 28.7710

77.0244

77.0166

14

14

Karala

Sultanpur Dabas

46	28.7709	76.9863	14	Salahpur Majra	96	1.4	15.3
40	28.7067	76.9908	15	Suda	71	1.4	13.4
48	28.7303	77.0231	15	Karala	68	1.8	12.7
49	28.7381	77.0014	15	Ladpur	66	1.9	15.5
50	28.7192	76.9828	15	Nizampur Rashid	63	2.0	13.5
51	28.7261	77.0042	15	Khanjwala	76	1.7	13.2
52	28.7061	76.9758	15	Suda	61	2.1	14.0
53	28.6953	77.0239	16	Mundka	81	1.4	14.6
54	28.6840	77.0076	16	Mundka	85	1.5	12.0
55	28.6729	77.0179	16	Mundka	89	1.5	16.1
56	28.6526	77.0232	16	Bakarwalan	81	1.5	10.1
57	28.6914	76.9766	16	Tikri Kalan	86	1.3	14.7
58	28.6805	76.9904	16	Tikri Kalan	86	1.5	12.6
59	28.6684	76.9936	16	Hiran Kudna	85	1.3	10.3
60	28.6535	76.9840	16	Dhichaon Kalan	77	1.2	15.3
61	28.6400	77.0206	10		90		
62	28.6262	77.0208	17	Bagrola Mohan Garden	70	1.3 1.8	12.1 13.5
63	28.6262	77.0202	17	Najafgarh	84	1.8	13.5
64 65	28.6159 28.6136	76.9748	17	Najafgarh	90	1.5 1.5	15.5
66	28.6136	76.9992 76.9894	17 17	Najafgarh Roshanpura	90	1.5	14.2 15.5
67			17		76		
	28.6316	76.9758		Dhichaon Kalan		1.4	10.3
68	28.6345	76.9974	17	Dhichaon Kalan	72	1.8	16.4
69	28.5586	76.9811	18	Rewla Khanpur	67	1.9	15.5
70	28.5906	76.9796	18	Paprawat	73	1.8	15.4
71	28.5927	76.9903	18	Dinarpur	64	1.9	15.0
72	28.5801	77.0218	18	Qutubpur	66	1.7	15.0
73	28.5782	76.9773	18	Paprawat	85	1.4	15.2
74	28.5678	77.0104	18	Chhawla	70	1.6	13.2
75	28.5694	76.9967	18	Chhawla	77	1.7	16.2
76	28.5534	77.0019	18	Chhawla	64	1.7	12.8
77	28.8608	77.0566	20	Lampur	69	1.8	15.7
78	28.8692	77.0555	20	Lampur	71	1.7	14.5
79	28.8683	77.0944	20	Narela	70	1.7	13.2
80	28.8521	77.0675	20	Lampur	71	1.9	15.7
81	28.8147	77.0711	21	Sanoth	69	1.8	15.2
82	28.8315	77.0723	21	Bankner	70	1.8	14.6
83	28.7946	77.0299	22	Bawana	54	2.3	13.4
84	28.7998	77.0729	22	Holambi Khurd	66	2.1	14.3
85	28.7800	77.0300	22	Sultanpur Dabas	75	1.7	12.7
86	28.7732	77.0526	22	Barwala	62	1.9	11.7
87	28.7842	77.0670	22	Khera Khurd	65	2.0	15.5
88	28.7619	77.0375	22	Sultanpur Dabas	71	2.0	15.3
89	28.7601	77.0653	22	Barwala	74	1.9	15.9
90	28.7371	77.0386	23	Karala	61	2.1	16.3
91	28.7439	77.0517	23	Karala	66	1.9	14.7
92	28.7378	77.0714	23	Pansali	65	2.0	15.7
93	28.7200	77.0383	23	Mohammadpur Majar	64	2.0	15.8
94	28.7257	77.0563	23	Karala	66	2.0	15.5
95	28.7200	77.0711	23	Rohini Sec-23	70	1.8	15.6
96	28.7106	77.0489	23	Mubarakpur Dabas	62	1.9	14.4

XXXVIII

97	28.6988	77.0438	24	Kirari Suleman Nagar	69	1.6	10.8
98	28.6558	77.0401	24	Ranhola Shafipur	68	1.6	10.4
99	28.6828	77.0297	24	Mundka	64	1.6	10.9
100	28.5550	77.0394	26	Dwarka Sec-25	61	2.1	15.2
101	28.5946	77.0352	26	Dwarka Sec-13	65	1.9	14.2
102	28.5949	77.0543	26	Dwarka Sec-5	68	1.7	14.8
103	28.5939	77.0711	26	Dwarka Sec-6	66	1.8	13.1
104	28.5730	77.0528	26	Dwarka Sec-19	72	1.8	13.5
105	28.5814	77.0737	26	Pappan Kalan	71	1.8	12.7
106	28.5597	77.0262	26	Dwarka Sec-24	70	1.9	15.4
107	28.5498	77.0540	26	Dwarka Sec-26	65	2.0	13.4
108	28.5550	77.0675	26	Dwarka Sec-21	70	2.0	13.3
109	28.5378	77.0517	27	Dwarka Sec-27	64	1.9	11.7
110	28.8658	77.0967	28	Mamurpur	57	1.8	12.5
111	28.8544	77.1225	28	Mamurpur	79	1.8	14.6
112	28.8544	77.1018	28	Mamurpur	79	1.4	9.8
113	28.8655	77.1113	28	Mamurpur	54	1.9	11.6
114	28.8261	77.1069	29	Narela	82	1.5	14.3
115	28.8147	77.0856	29	Bhorgarh	73	1.6	13.3
116	28.8431	77.0881	29	Narela	57	2.1	11.4
117	28.8173	77.0976	29	Rajpur Kalan	71	1.3	8.7
118	28.8327	77.0921	29	Bhorgarh	71	1.9	15.1
119	28.8336	77.1169	29	Tikri Khurd	70	1.5	11.8
120	28.8053	77.0972	29	Holambi Kalan	59	1.9	11.5
121	28.8172	77.1165	29	Shahpur Garhi	83	1.5	13.7
122	28.7884	77.0819	30	Naya Bansh	65	1.9	13.8
123	28.7500	77.0765	30	Pehladpur Banger	65	1.7	14.3
124	28.7932	77.0975	30	Holambi Khurd	61	1.8	12.2
125	28.7958	77.1052	30	Holambi Khurd	64	2.0	15.0
126	28.7731	77.0923	30	Khera Khurd	66	1.9	15.6
127	28.7806	77.1125	30	Khera Khurd	62	1.7	11.5
128	28.7556	77.0921	30	Pehladpur Banger	62	1.8	11.9
129	28.7561	77.1131	30	Sirsapur village	61	1.9	13.7
130	28.7244	77.0867	31	Rohini Sec-25	64	1.8	13.4
131	28.7283	77.1187	31	Rohini Sec-12	64	1.5	10.1
132	28.7161	77.0957	31	Rithala	62	1.8	12.3
133	28.7098	77.1119	31	Rohini Sec-6, Blk-F	61	1.8	14.1
134	28.7464	77.1042	31	Shiv Vihar	65	1.6	9.7
135	28.7079	77.0798	31	Sultanpuri	64	1.9	14.4
136	28.7016	77.0904	31	Mangolpuri Blk-Y	66	2.0	15.0
137	28.6969	77.0779	32	Sultanpuri	62	1.8	12.6
138	28.6970	77.1136	32	Pushpanjali Enclave, Rohini	64	2.0	14.7
139	28.6508	77.0857	32	Gurunanak Nagar	65	1.5	11.8
140	28.6583	77.1042	32	Khayala	64	1.8	15.1
141	28.6800	77.0742	32	Nangloi Jat	64	1.6	12.1
142	28.6881	77.0956	32	Mangolpuri	63	1.7	11.7
143	28.6661	77.0917	32	Sunder Aptt, Sunder Vihar	63	1.9	13.4
144	28.6670	77.1023	32	Jwala Heri, Paschim Vihar	64	1.7	12.3
145	28.6439	77.1083	33	Park, Near Tagor Garden	118	1.2	15.7
146	28.6306	77.1069	33	Tihar Village	116	1.3	16.1
147	28.6367	77.1225	33	Subhash Nagar, Blk-10	116	1.3	15.5

148	28.8436	77.1304	38	Singhola	76	1.5	14.2
149	28.8283	77.1450	38	Hamidpur	77	1.6	14.1
150	28.8423	77.1704	38	Tajpur Kalan	75	1.6	13.5
151	28.8269	77.1296	38	Khanpur	74	1.6	13.0
152	28.8135	77.1429	38	Bankoli	74	1.4	10.7
153	28.8194	77.1551	38	Hamidpur	76	1.5	12.9
154	28.8277	77.1702	38	Bakhtawarpur	72	1.6	14.5
155	28.8031	77.1313	38	Alipur	73	1.9	15.6
156	28.8072	77.1663	38	Bakhtawarpur	73	1.8	14.7
157	28.8108	77.1564	38	Bankoli	73	1.7	15.5
158	28.8180	77.1744	38	Bakhtawarpur	72	1.9	16.1
150	28.7890	77.1301	39	Alipur	69	1.7	13.5
160	28.7973	77.1495	39	Alipur	70	2.0	13.5
161	28.7938	77.1663	39	Mukhmelpur	66	1.9	14.5
161	28.7938	77.1454	39	Budhpur, Bijapur	69	1.9	14.4
162	28.7796	77.1686	39	Near Ibrahampur	67	1.8	12.5
164	28.7745	77.1335	39	· · · · · · · · · · · · · · · · · · ·	66	1.9	
164	28.7726	77.1501	39	Khera Ghari Kadipur	68	1.9	14.0 12.7
166	28.7634	77.1722	39	Nathupura	72	1.7	14.6
167	28.7621	77.1524	39	Near Swaroopnagar	65	1.7	12.4
168	28.7563	77.1364	39	Rana Park, Sirsapur	70	1.7	11.5
169	28.7535	77.1654	39	Swaroopnagar, New Colony	72	1.4	12.2
170	28.7881	77.1552	39	Mukhmelpur	67	1.9	14.2
171	28.7688	77.1625	39	Kadipur	70	1.7	14.9
172	28.7429	77.1526	40	Sanjay Gandhi Transport Nagar Blk AG	63	1.8	13.9
173	28.7393	77.1358	40	Rohini Sec-18, Blk A, Pkt8	67	2.0	15.5
174	28.7364	77.1646	40	Bhalsawa	67	1.9	16.0
175	28.7286	77.1493	40	Haiderpur	67	2.0	15.6
176	28.7096	77.1280	40	Rohini Sec-14	67	1.6	12.4
177	28.7108	77.1436	40	North Pitampura, Pkt-NU	66	2.0	15.7
178	28.7194	77.1601	40	Sahipur, Near Shalimar Bagh	67	1.9	15.6
179	28.7191	77.1747	40	Aadarsh Nagar	67	2.0	15.6
180	28.7041	77.1551	40	Pitampura, Blk-TP Pocket	67	1.9	15.0
181	28.7056	77.1744	40	Wazirpur Indl area, Blk-B	68	1.9	16.4
182	28.6928	77.1249	41	Saraswati Vihar	46	2.3	14.0
183	28.6981	77.1419	41	South Pitampura, Blk Pocket-KD	51	2.2	9.3
184	28.6953	77.1631	41	ashok Vihar, Ph-I, Blk-E	49	2.0	12.3
185	28.6597	77.1302	41	Near Raja Garden	58	2.0	13.9
186	28.6833	77.1450	41	Sakurpur Village	49	2.4	14.9
187	28.6703	77.1417	41	East Punjabi Bagh	46	2.5	15.4
188	28.6708	77.1581	41	Karampura Block, Indl Area	48	2.2	13.6
189	28.5431	77.1327	44	CISF Rd, Mahipalpur Extn	63	2.0	14.1
190	28.4972	77.1325	45	Ghitorni Village	55	1.7	10.0
191	28.4964	77.1622	45	Sultanpur Village	64	1.9	12.9
192	28.4858	77.1331	45	Saink Nivas MES, Ghitorni	68	1.8	14.5
193	28.4839	77.1628	45	HK Farm House, near Godaipur	73	1.5	12.2
194	28.4706	77.1631	45	Jaunapur	67	1.9	16.4
195	28.4440	77.1464	46	Farm house, Mandi Village	60	2.1	13.2
196	28.4416	77.1347	46	KH No.66/6, Mandi Village	62	2.0	15.8
197	28.4400	77.1636	46	SEPAL Farm Dera, Mandi Rd, Mandi	65	1.9	14.5
198	28.8441	77.1848	48	MCD School, Palla	77	1.6	14.6

199	28.8455	77.2001	48	Palla	77	1.4	11.6
200	28.8294	77.1788	48	Bakhtawarpur	73	1.5	12.7
201	28.8308	77.1986	48	School Jhangla	74	1.5	12.7
202	28.8175	77.2134	48	Palla Police Post	76	1.5	11.5
203	28.8167	77.1994	48	Near Jal Board Palla	74	1.5	13.0
204	28.7978	77.1807	49	Hiranki Village	67	2.0	15.7
205	28.7708	77.1875	49	Uttarakhand Coloney	64	1.8	13.9
206	28.7639	77.2153	49	Shank No.1, Burari village	65	1.9	13.6
207	28.7948	77.1911	49	Near Shank 22, Hiranki Village	67	1.9	15.4
208	28.7946	77.1998	49	Tedi Daulatpur	67	1.7	13.6
209	28.7810	77.1838	49	Resid. area, Hiranki, Nr Ibrahampur	67	1.6	13.2
210	28.7757	77.1992	49	Silampur Majra	66	1.8	15.0
211	28.7604	77.1976	49	Behind Shani temple, Burari	67	1.9	14.8
212	28.7445	77.1943	50	Sant Nagar	56	2.0	15.9
213	28.7144	77.1874	50	Nr Model Town	67	2.0	19.0
214	28.7135	77.2047	50	Radio Coloney, Nr Dhaka Village	60	1.9	15.3
215	28.7319	77.1810	50	Near Jahangirpuri Blk-JJC	67	1.9	16.0
215	28.7336	77.2064	50	Jharoda Dairy Coloney	60	2.0	15.7
217	28.7331	77.2185	50	Nr Milan Vihar, Burari	56	2.3	13.7
218	28.7260	77.1939	50	Nirankari Ground, nr Jharoda Majra	50	2.0	13.1
219	28.7031	77.1966	50	Model Town	70	2.0	15.1
210	28.7059	77.2210	50	Timarpur	76	1.8	16.0
221	28.6793	77.2205	51	Civil Lines	39	3.1	10.0
221	28.6962	77.2104	51	Khalsa College, Nr Univ campus	70	1.5	13.4
223	28.6893	77.1978	51	CC Colony	61	2.1	15.0
223	28.6896	77.1834	51	Near Satyavati Colony	62	2.0	13.0
225	28.6478	77.2109	51	Azad Market	39	2.8	14.5
225	28.6788	77.1878	51	Shiv Temp, Fakira Bagh, Shastri Nagar	68	1.8	12.0
227	28.6850	77.2033	51	Roopnagar Blk-6	68	1.8	15.4
228	28.6680	77.2208	51	Civil Lines, Nr Tis Hazari	40	2.8	12.1
229	28.5208	77.1910	54	Lado Sarai	39	3.0	14.5
230	28.5340	77.1936	54	Govt Nursery, Adhichini	79	1.6	16.5
230	28.5413	77.1829	54	Lal bahadur Vidyapith, Katwariasarai	70	1.8	12.2
232	28.5056	77.2058	54	Neb Sarai, Mehrauli	39	3.3	14.7
232	28.5478	77.1937	54	Rose Garden, Haus Khas	67	1.9	14.7
234	28.5388	77.2088	54	Begampur,Malviya Nagar	58	2.1	13.6
235	28.5387	77.2244	54	Shek Sarai,PhI	59	2.0	16.9
235	28.5288	77.2066	54	Hauz Rani Saket	63	2.0	13.2
230	28.5080	77.1739	54	Kusum Nursery Vasant Kunj	57	2.0	17.2
237	28.5161	77.2119	54	Saket-Bdarpur Rd	57	2.1	17.2
238	28.5001	77.2220	54	Sainik Farm, Nr Sangam Vihar	56	2.3	15.7
235	28.4986	77.1792	55	Near Chhatarpur Mandir	60	2.1	15.4
241	28.4978	77.1942	55	DDA, Maidan Garhi	39	3.1	14.2
241	28.4828	77.1806	55	10 Farm, DLF, Chhatarpur	67	1.9	16.4
243	28.4856	77.1971	55	Rajpur Khurd	69	1.9	16.2
244	28.4717	77.1922	55	Saharpur Extn, ND	64	1.8	12.5
245	28.4567	77.2075	55	Forest, Asola Village	61	2.1	15.2
245	28.7176	77.2510	58	PT School, Wazirabad	70	1.7	15.8
240	28.7325	77.2325	58	Ramp No.3, Near Jagatpur Bund	65	1.7	13.0
247	28.7450	77.2559	58	Burari Village	68	1.7	14.1
240	28.7079	77.2364	58	Pantan Bridge, Wazirabad	55	2.1	13.0
243	20.7075	,,,_304	55			2.1	14.2

250	28.7338	77.2657	58	Govt School, Karwal Nagar	57	2.0	16.0
251	28.7188	77.2664	58	Near Priya Convent Sch, Dayalpur	75	1.6	15.6
252	28.7039	77.2554	58	Garai Mandu Village	65	1.8	16.4
253	28.6857	77.2350	59	New Usmanpur Village	53	1.9	11.8
254	28.6587	77.2401	59	MG Park, Lal Quila	53	2.2	16.7
255	28.6924	77.2548	59	Pusta-4, Usmanpur	65	2.0	11.7
256	28.6769	77.2471	59	Opp DMRC off, Shatri Park	57	2.0	12.9
257	28.6753	77.2692	59	Silampur	70	1.8	14.9
258	28.6668	77.2503	59	Shastri Park	18	2.4	7.2
259	28.6589	77.2692	59	SK School, Geeta Colony	74	1.7	15.3
260	28.7304	77.2814	65	Kali Mandir, Shiv Vihar	61	1.9	13.5
261	28.7073	77.3232	65	Harsh vihar	64	1.7	12.1
262	28.7149	77.2815	65	Chamanpark, Johripur	73	1.7	14.6
263	28.7029	77.3076	65	Nand Nagari	81	1.8	16.0
264	28.7044	77.2769	65	Gokulpuri colony	70	1.6	12.2
265	28.7029	77.2962	65	East Gokulpur	54	1.8	10.5
265	28.6895	77.2893	66	Near Jyoti colony	68	1.9	15.7
267	28.6925	77.3129	66	Nand Nagari, Blk-E4	70	1.9	16.2
268	28.6777	77.2984	66	Mansarovar Park	75	1.5	16.1
269	28.6560	77.2923	66	Arjun Nagar	88	1.7	16.0
200	28.6653	77.3056	66	Jhilmil Coloney	70	1.9	15.9
270	28.6537	77.3157	66	Anand Vihar, Blk-C	70	1.8	16.7
272	28.6192	77.2865	67	Pandav Nagar, Blk-A	70	1.7	12.3
273	28.6242	77.3001	67	Vinod Nagar West, Blk-D	86	1.7	15.7
273	28.6092	77.3028	67	Mayur Vihar, Ph-I, Pkt 2	64	2.0	17.0
275	28.6111	77.3225	67	Durga park Coly, near Kundali	70	1.9	17.8
275	28.5398	77.2831	69	Park, near Appolo Hosp., Jasola	70	1.9	13.8
270	28.5234	77.3083	69	near Badarpur Thermal Plant, Khadar	72	1.5	11.8
278	28.5321	77.2956	69	DDA Park, Sarita Viahar, Blk-D	63	1.9	13.9
279	28.5412	77.3089	69	Kalindikunj, Jaitpur Road	70	1.7	12.8
280	28.5322	77.3161	69	DDA park, JJ Colony	60	1.8	12.2
281	28.5062	77.3017	69	Govt School, near NTPC, Badarpur	63	2.0	13.9
282	28.5025	77.3141	69	Near Irrigation Dept, Hari Nagar	41	2.6	15.7
283	28.6281	77.3253	72	Near Gaziur, Blk-D	70	1.8	13.3
284	28.6121	77.3348	72	Gharoli Dairy Farm, Blk-A	62	2.0	15.3
285	28.6032	77.3308	72	Near Kundli, Blk-A1	63	1.9	13.7
286	28.5147	77.3417	73	Jaitpur Extn	60	2.0	13.9
287	28.5253	77.3313	73	Near Police post, Jaitpur	60	1.8	12.5
288	28.8746	77.0795	20	Safiabad	77	1.7	13.0
289	28.8757	77.1114	28	Kundli	66	1.8	12.0
290	28.8125	77.0875	29	Holambi kalan	60	1.9	13.9
291	28.8300	77.1229	29	Tikri Khurd	102	1.4	15.6
292	28.7222	77.1056	31	DCE, Rithala	76	1.6	13.0
293	28.8183	77.1458	38	Bankoli	71	1.8	15.0
294	28.7499	77.1763	39	Bhalsawa Dairy	70	1.8	16.0
295	28.7917	77.1597	39	Mukhmelpur	70	1.8	13.1
296	28.8417	77.2125	48	Jangola	88	1.6	16.8
297	28.8056	77.1917	49	Fatehpur Jat	62	2.1	16.0
298	28.8583	77.2417	49	Sankrot	50	2.3	14.6
299	28.7083	77.2167	50	Indira Vihar	60	1.9	11.7
300	28.7427	77.2053	50	Salarpur	58	1.9	14.4

301	28.6917	77.2292	51	Majnu Ka Tila	154	0.9	14.5
301	28.7450	77.2442	58	Libaspur	79	1.6	15.1
302	28.6072	76.8844	3	Mandhela Kalan	117	1.0	14.8
303	28.5828	76.9311	11	Khera Dabas	104	1.2	14.8
304	28.5324	76.9461	12	Shikarpur	80	1.1	14.0
305	28.7872	77.0164	14	Bawana, Khanjawala	70	1.9	14.5
300	28.6264	77.0104	17	Mohan Garden	78	1.9	10.5
307	28.7072	77.0322	23	Madanpur Dabas	68	1.9	14.0
308	28.8714	77.0833	28	Narela	64	1.9	15.5
310	28.8042	77.1094	29	Holambi Kalan	60	2.1	15.4
310	28.7347	77.0892	31	Rohini Sec-25	65	2.1	13.4
311	28.6250		33		80	1.5	
		77.0903		Janakpuri Blk-B3B			15.3
313	28.5117	77.1083	35	Rajokri village	88	1.3	15.4
314	28.8180	77.1744	38	Bakhtawarpur	60	2.0	13.42
315	28.7535	77.1653	39	Swaroopnagar, New Colony	67	1.9	16.1
316	28.6828	77.1615	41	Keshavpuram	122	1.5	14.6
317	28.4717	77.1475	45	Akoi Farm, Jaunapur	42	3.0	14.7
318	28.6857	77.2159	51	Ridge, Near Univ Campus	39	2.4	13.3
319	28.6645	77.2074	51	Azadpur Market	62	1.7	15.2
320	28.6144	77.1763	52	Budha Jayanti Park	38	2.7	14.5
321	28.5386	77.2092	54	Begampur, Malviya Nagar	47	2.1	16.1
322	28.5252	77.2215	54	Pushpa Vihar, Sec-1	45	2.1	16.4
323	28.4723	77.1860	55	Chandan Hulla	73	1.3	14
324	28.7250	77.2510	58	PTS Wazirabad	66	1.2	12.2
325	28.5811	77.2313	61	Jawaharlal Nehru Stadium	39	1.7	12.2
326	28.6029	77.2855	67	Nangal	81	1.2	12.6
327	28.5325	77.3167	69	JJ Colony, Sarita Vihar	110	1.0	16.6
328	28.5811	77.2330	61	Jawaharlal Nehru Stadium	42	1.4	7.7
329	28.5889	77.2596	61	Sarai Kale Khan	81	1.3	14.1
330	28.5889	77.2596	61	Sarai Kale Khan	80	1.4	16.4
331	28.5963	77.2578	61	Rajiv Gandhi Smriti Van, Nr Zoo	100	1.3	18.0
332	28.5997	77.2569	61	Rajiv Gandhi Smriti Van, Nr Zoo	66	1.4	12.6
333	28.5976	77.2575	61	Rajiv Gandhi Smriti Van, Nr Zoo	100	1.3	19.1
334	28.6783	77.1583	41	Tri Nagar	43	1.8	12.9
335	28.6699	77.2704	59	Seelampur	61	1.4	8.6
336	28.6783	77.1583	41	Tri Nagar	63	1.7	13.4
337	28.5524	77.2758	68	Sukhdev Vihar	74	1.3	12.5
338	28.5233	77.2279	62	Pushpa Vihar	53	2.0	14.6
339	28.5431	77.2113	54	Paschimshila Park, South Blk-S	46	2.6	17.8
340	28.6783	77.1583	41	Tri Nagar	74	1.7	15.4
341	28.7177	77.1103	31	Rohini Sec-5, Pkt-6	49	2.0	14.9
342	28.5248	77.2137	54	Saket	63	1.5	15.0
343	28.6813	77.0971	32	Udyog Nagar, Nr Paschim Vihar	76	1.7	15.8
344	28.6407	77.2320	60	Ramlila Ground	83	1.2	15.1
345	28.4724	77.1860	55	Chandan Hulla	73	1.6	13.3
346	28.4704	77.2013	55	Saharpur Extn, ND	32	3.4	11.3
340	28.4458	77.1866	56	Fatehpur Beri	100	1.2	13.0
347	28.4438	77.2006	56	Bhati Mines	43	1.2	8.9
348	28.6830	77.1622	41	Keshavpuram	90	1.9	14.7
545	28.6029	77.2855	67	Nangal	81	1.8	14.7
350							

352	28.6768	77.3123	66	Dilshad Garden, Blk R	92	1.5	15.3
352	28.6222	77.3388	72	NearMayur Vihar Ph-III	50	1.9	10.7
353	28.7342	77.0891	31	Rohini Sec-25	55	2.2	11.8
355	28.5089	77.1083	35	Rajokri village	110	1.4	14.9
355	28.6379	77.0761	33	Vikaspuri Blk-C	77	1.4	14.5
350	28.5877	77.0474	26	Dwarka Sec-11	68	2.0	15.4
358	28.5933	77.0492	26	East of Dwarka Sec-12	67	2.0	15.7
358	28.6736	77.2981	66	Shahdara	74	1.9	15.7
360	28.5926	77.0815	34	Nr Palam Village	69	2.0	15.1
361	28.6175	77.0480	25	Sainik Nagar	72	1.8	15.1
362	28.5963	77.0480	34	Dwarka Sec-1	68	1.8	13.4
363	28.6699	77.1389	41		51	2.4	14.7
				West Punjabi Bagh	40	2.4	
364	28.5963	77.2578	61	Rajiv Gandhi Smriti Van, Nr Zoo			15.3
365	28.8197	77.0612	21	Sanoth	69	1.8	16.1
366	28.6222	77.2042	52	Nr MP's Club, Rakabganj	40	2.9	14.6
367	28.5300	77.0890	35	Samalka, Nr Kapashera	69	2.0	15.1
368	28.5449	77.1198	35	Intl Airport Authority, Nr Mahipalpur	63	2.1	15.2
369	28.5477	77.1250	35	Intl Airport Authority, Nr Mahipalpur	61	2.2	15.3
370	28.5861	77.0551	26	Dwarka Sec-10	68	1.9	15.6
371	28.5958	77.1200	34	Sadar Bazar (Delhi Cantt)	71	1.8	15.3
372	28.7119	77.1601	40	Shalimar Bagh, Pkt-BD	66	1.9	15.4
373	28.8528	77.0889	29	Narela	66	1.9	15.6
374	28.6250	76.9231	3	Kair	83	1.6	15.3
375	28.5917	76.9250	4	Jafarpur Kalan	84	1.6	14.9
376	28.6417	77.1647	42	West Patel Nagar	40	2.6	14.5
377	28.6611	77.1458	41	New Motinagar, Blk-17	99	1.4	15.3
378	28.6431	77.0972	33	Chaukhandi, nr Hind Nagar	78	1.8	15.1
379	28.6636	77.1433	41	New Motinagar, Blk-B	76	1.8	15.2
380	28.6919	77.1602	41	Lawrence Rd Coloney, Blk-C-7	63	2.1	15.6
381	28.6736	77.1931	51	Gulabi Bagh	59	2.1	15.9
382	28.6797	77.1573	41	Omkar Nagar	71	1.9	15.6
383	28.6475	77.1797	52	Prasad Nagar, Nr E. Patel nagar	40	2.7	15.2
384	28.5827	77.0579	26	Dwarka Sec-10	69	1.9	15.4
385	28.6506	77.3042	66	Karkarduma	75	1.8	15.4
386	28.6484	77.3046	67	Karkarduma	65	1.8	15.4
387	28.5807	77.2924	68	Trans Yamuna, nr Chilla	78	1.7	15.7
388	28.6417	77.2522	60	Rajghat	40	2.7	15.3
389	28.6681	77.2564	59	Shastri Park, BLK-A	46	2.4	15.3
390	28.5150	77.2722	62	Close to Tuglakabad Village	40	2.8	14.9
391	28.5686	77.2436	61	Lajpatnagar, part-ll	67	2.0	15.4
392	28.5681	77.2189	53	South Ex Part-II	58	2.1	15.6
393	28.5444	77.2583	62	Kalkaji, Blk-D	40	2.6	14.3
394	28.5722	77.1708	43	RK Puram, Sec-8	40	2.8	14.1
395	28.5781	77.1625	43	Anand Niketan, Blk-D	40	2.7	15.1
396	28.6222	77.2467	60	Mata Sundari Rly Coloney	40	2.8	16.3
397	28.6903	77.1778	51	Satyawati Coloney, Blk-A, Pkt-A	60	2.1	15.1
398	28.6556	77.1917	51	Karol Bagh, Blk-D, Pkt52	40	2.5	15.1
399	28.6083	77.2403	60	Bapa Nagar	78	1.7	15.7
400	28.6111	77.2264	60	Vigyan Bhawan	69	1.9	15.7
401	28.6367	77.2064	52	Govt Quarters, Nr Gole Market	40	2.7	14.6
402	28.6417	77.1508	42	Pusa Institute	40	2.5	14.8

403	28.5651	77.0783	34	IGI nr Pappan Kalan	67	2.0	15.6
404	28.6389	77.2375	60	West of F.S.Kotla stadium	40	2.6	15.6
405	28.6260	77.2099	52	Bangla Saheb Gurudwara	40	2.7	14.9
406	28.6735	77.2916	66	Makki Sarai	63	2.0	14.9
407	28.6021	77.1928	52	Chanakyapuri, Nr JLN Memorial Museum	40	2.8	14.5
408	28.5523	77.2140	53	Siri Fort Sports Complex	60	2.2	15.5
409	28.5616	77.2242	53	Aayurvugyan Nagar	60	2.1	15.5
410	28.5677	77.2272	61	Andrews Ganj	60	2.1	15.7
411	28.6390	77.1316	42	Mansarover Garden, Blk-WZ	61	2.2	15.1
412	28.5255	77.2120	54	Saket	70	2.0	15.6
413	28.5862	77.0639	26	Dwarka Sec-10	69	2.0	16.1
414	28.7982	77.0362	22	Bawana	71	1.9	15.4
415	28.6805	77.3130	66	Dilshad Garden, Blk-C	72	1.9	15.6
416	28.7100	77.2835	65	Bhagirath Vihar	71	1.9	15.4
417	28.6217	77.2440	60	Pragati Maidan	40	2.8	15.2
418	28.7011	77.3078	65	Mandoli Extn	80	1.7	15.8
419	28.5417	77.1833	54	Qutub Indl Area	40	2.8	14.4
420	28.5332	77.3029	69	Madanpur Khadar Village	73	1.6	16.2
421	28.7135	77.1774	50	Majlis Park	68	1.9	15.6
422	28.5646	77.2477	61	Lajpat Nagar, Part-IV	70	2.0	15.2
423	28.7238	77.1353	40	Rohinin Sec-13, nr Vikrant Apartment	68	1.9	15.6
424	28.5621	77.0769	34	IGI, nr Dwarka Sec-21	68	2.0	15.2
425	28.6779	77.2274	59	Civil Lines	40	2.6	15.2
426	28.5730	77.0777	34	Dwarka Sec-8	70	1.9	15.2
427	28.5867	77.0933	34	Sadh Nagar, Palam coloney	70	1.9	15.4
428	28.7265	77.1125	31	Rohini Sec-25	40	2.8	15.2
429	28.7268	77.1136	31	Rohini Sec-25	40	2.7	15.2
430	28.6444	77.2269	60	Kamla Market	72	1.7	15.9
431	28.6006	77.0931	33	Mahaveer Enclave-II, nr Kailashpuri west	72	1.9	15.4
432	28.6150	77.0889	33	Janakpuri Blk C-3	78	1.7	15.8
433	28.6153	77.0886	33	Janakpuri Blk C-3	78	1.8	15.4
434	28.6708	77.2903	66	Teli Bara	74	1.3	13.4
435	28.6683	77.2762	66	Seelampur	79	1.7	15.5
436	28.7012	77.2888	65	South of Gokulpur	67	2.0	16.0
437	28.7164	77.2863	65	Nr Kardam Farm, Johripur	61	1.9	15.3
438	28.6764	77.2889	66	Naveen Shahdara	74	1.7	16.0
439	28.6764	77.2889	66	Naveen Shahdara	74	1.7	15.9
440	28.6699	77.2704	59	Seelampur	88	1.5	15.5
441	28.5979	77.0510	26	Dwarka Sec-4	67	2.0	15.6
442	28.6806	77.1561	41	Lawrence Rd Indl Area	73	1.8	15.7
443	28.6708	77.1972	51	Andha Mughal, Nr Gulabi Bagh	55	2.2	15.8
444	28.6117	77.3103	67	Patparganj, nr Trilokpuri-I	71	1.8	15.8
445	28.7042	77.3131	65	Mandoli -	75	1.7	15.9
446	28.7931	77.0417	22	Bawana	75	1.7	15.9
447	28.7019	77.1667	40	Wazirpur Indl Area	64	2.1	15.4
448	28.5355	77.1626	44	JNU	10	15.1	12.8
449	28.4508	77.2094	55	Asola	15	9.9	13.98

	Su	i lace all	<u>u (III)</u>) Amplification Factor (based o		·Ľ).			
S.No.	Latitude (deg)	Longitude (deg)	Sheet No	Locality name	PGA at base of soil column	PGA at 6m depth below Ground Surface	PGA at 3m depth below Ground Surface	PGA at Ground Surface	Amplification Factor
1	28.6247	76.9144	3	Kair	0.128	0.195	0.213	0.274	2.1
2	28.6186	76.8843	3	Mandhela Khurd	0.097	0.198	0.229	0.305	3.1
3	28.6128	76.8972	3	Mandhela Kalan	0.095	0.193	0.215	0.270	2.9
4	28.6128	76.9158	3	Kair	0.104	0.209	0.248	0.291	2.8
5	28.6075	76.8862	3	Mandhela Kalan	0.110	0.194	0.217	0.256	2.3
6	28.6028	76.9000	3	Mandhela Kalan	0.107	0.209	0.255	0.315	2.9
7	28.6029	76.9149	3	Jafarpur Kalan	0.117	0.234	0.274	0.342	2.9
8	28.5953	76.8871	4	Baqargarh	0.104	0.188	0.212	0.254	2.4
9	28.5591	76.9028	4	Ujwa	0.109	0.229	0.284	0.361	3.3
10	28.5991	76.9198	4	Jafarpur Kalan	0.098	0.202	0.257	0.326	3.3
11	28.5766	76.8839	4	Quazipur	0.098	0.207	0.228	0.284	2.9
12	28.5751	76.9009	4	Shamaspur Khalsa	0.103	0.179	0.216	0.236	2.3
13	28.5798	76.9129	4	Ujwa	0.109	0.173	0.192	0.228	2.1
14	28.5647	76.8853	4	Quazipur	0.098	0.210	0.261	0.330	3.4
15	28.5654	76.9111	4	Ujwa	0.097	0.194	0.223	0.291	3.0
16	28.5509	76.9115	4	Daryapur Khurd	0.090	0.169	0.188	0.220	2.4
17	28.8188	76.9738	6	Mungashpur	0.119	0.229	0.250	0.290	2.4
18	28.8111	76.9528	6	Qutubgarh	0.125	0.263	0.278	0.333	2.7
19	28.7961	76.9515	7	Qutubgarh	0.154	0.270	0.325	0.382	2.5
20	28.7673	76.9632	7	Khor Punjab	0.125	0.235	0.307	0.343	2.7
21	28.7576	76.9466	7	Jonti	0.134	0.232	0.269	0.340	2.5
22	28.7486	76.9623	8	Jonti	0.110	0.220	0.243	0.299	2.7
23	28.7203	76.9658	8	Nizampur Rashid	0.135	0.240	0.315	0.415	3.1
24	28.6923	76.9623	9	Tikri Kalan	0.109	0.236	0.325	0.390	3.6
25	28.6736	76.9650	9	Tikri Kalan	0.119	0.196	0.225	0.244	2.1
26	28.6816	76.9744	9	Tikri Kalan	0.100	0.208	0.242	0.290	2.9
27	28.6653	76.9494	9	Jharoda Kalan	0.108	0.215	0.233	0.285	2.6
28	28.6514	76.9342	9	Jharoda Kalan	0.118	0.219	0.238	0.287	2.4
29	28.6546	76.9598	9	Jharoda Kalan	0.119	0.188	0.195	0.245	2.1
30	28.6437	76.9574	10	Jharoda Kalan	0.117	0.205	0.247	0.322	2.7
31	28.6048	76.9573	10	Mitraon	0.103	0.194	0.223	0.275	2.7
32	28.6161	76.9300	10	Kair	0.098	0.209	0.227	0.297	3.0
33	28.6167	76.9592	10	Mitraon	0.095	0.185	0.235	0.267	2.8
34	28.6306	76.9478	10	Surakhpur	0.117	0.218	0.236	0.309	2.6
35	28.6318	76.9607	10	Najafgarh	0.114	0.185	0.216	0.266	2.3
36	28.5383	76.9818	12	Kangan heri	0.113	0.186	0.258	0.338	3.0
L		1		v -	1	0		·	

 Table 9.4: Peak Ground Acceleration (PGA) (i) at base of soil column (ii) at 6m & 3m below Ground surface and (iii) Amplification Factor (based on MCE).

37	28.8014	77.0240	13	Nangal Thakuran	0.119	0.214	0.231	0.258	2.2
38	28.8006	76.9821	13	Katewara	0.117	0.217	0.239	0.267	2.3
39	28.8025	76.9981	13	Bajidpur Thakran	0.110	0.218	0.234	0.280	2.5
40	28.7903	76.9771	14	Khorjat	0.138	0.243	0.287	0.366	2.6
41	28.7612	76.9753	14	Chatesar	0.116	0.238	0.281	0.340	2.9
42	28.7880	77.0151	14	Nangal Thakuran	0.108	0.248	0.270	0.368	3.4
43	28.7542	77.0071	14	Budhanpur	0.111	0.209	0.244	0.290	2.6
44	28.7503	77.0244	14	Karala	0.133	0.236	0.279	0.335	2.5
45	28.7710	77.0166	14	Sultanpur Dabas	0.114	0.211	0.263	0.312	2.7
46	28.7709	76.9863	14	Salahpur Majra	0.112	0.229	0.269	0.336	3.0
47	28.7067	76.9908	15	Suda	0.127	0.205	0.236	0.307	2.4
48	28.7303	77.0231	15	Karala	0.129	0.208	0.281	0.322	2.5
49	28.7381	77.0014	15	Ladpur	0.136	0.210	0.301	0.382	2.8
50	28.7192	76.9828	15	Nizampur Rashid	0.116	0.250	0.265	0.313	2.7
51	28.7261	77.0042	15	Khanjwala	0.122	0.215	0.251	0.320	2.6
52	28.7061	76.9758	15	Suda	0.123	0.220	0.230	0.264	2.2
53	28.6953	77.0239	16	Mundka	0.099	0.201	0.252	0.287	2.9
54	28.6840	77.0076	16	Mundka	0.126	0.183	0.191	0.236	1.9
55	28.6729	77.0179	16	Mundka	0.107	0.210	0.268	0.297	2.8
56	28.6526	77.0232	16	Bakarwalan	0.114	0.214	0.250	0.308	2.7
57	28.6914	76.9766	16	Tikri Kalan	0.100	0.201	0.269	0.297	3.0
58	28.6805	76.9904	16	Tikri Kalan	0.098	0.213	0.247	0.310	3.2
59	28.6684	76.9936	16	Hiran Kudna	0.105	0.200	0.252	0.295	2.8
60	28.6535	76.9840	16	Dhichaon Kalan	0.127	0.224	0.255	0.318	2.5
61	28.6400	77.0206	17	Bagrola	0.104	0.177	0.187	0.242	2.3
62	28.6262	77.0202	17	Mohan Garden	0.127	0.204	0.241	0.319	2.5
63	28.6062	77.0112	17	Najafgarh	0.111	0.188	0.221	0.277	2.5
64	28.6159	76.9748	17	Najafgarh	0.105	0.193	0.232	0.280	2.7
65	28.6136	76.9992	17	Najafgarh	0.102	0.183	0.204	0.259	2.5
66	28.6014	76.9894	17	Roshanpura	0.120	0.199	0.221	0.273	2.3
67	28.6316	76.9758	17	Dhichaon Kalan	0.108	0.191	0.220	0.257	2.4
68	28.6345	76.9974	17	Dhichaon Kalan	0.133	0.214	0.252	0.331	2.5
69	28.5586	76.9811	18	Rewla Khanpur	0.110	0.201	0.249	0.318	2.9
70	28.5906	76.9796	18	Paprawat	0.126	0.199	0.239	0.313	2.5
71	28.5927	76.9903	18	Dinarpur	0.129	0.183	0.273	0.390	3.0
72	28.5801	77.0218	18	Qutubpur	0.108	0.176	0.246	0.389	3.6
73	28.5782	76.9773	18	Paprawat	0.096	0.195	0.230	0.311	3.2
74	28.5678	77.0104	18	Chhawla	0.102	0.193	0.226	0.323	3.2
75	28.5694	76.9967	18	Chhawla	0.118	0.197	0.228	0.307	2.6
76	28.5534	77.0019	18	Chhawla	0.125	0.170	0.239	0.385	3.1
77	28.8608	77.0566	20	Lampur	0.165	0.249	0.310	0.449	2.7

78	28.8692	77.0555	20	Lampur	0.166	0.255	0.289	0.405	2.4
79	28.8683	77.0944	20	Narela	0.161	0.253	0.272	0.351	2.2
80	28.8521	77.0675	20	Lampur	0.138	0.256	0.310	0.368	2.7
81	28.8147	77.0711	21	Sanoth	0.149	0.221	0.275	0.381	2.6
82	28.8315	77.0723	21	Bankner	0.144	0.231	0.274	0.353	2.4
83	28.7946	77.0299	22	Bawana	0.128	0.253	0.297	0.352	2.8
84	28.7998	77.0729	22	Holambi Khurd	0.111	0.231	0.281	0.326	2.9
85	28.7800	77.0300	22	Sultanpur Dabas	0.152	0.224	0.237	0.299	2.0
86	28.7732	77.0526	22	Barwala	0.142	0.209	0.247	0.297	2.1
87	28.7842	77.0670	22	Khera Khurd	0.124	0.242	0.288	0.325	2.6
88	28.7619	77.0375	22	Sultanpur Dabas	0.122	0.241	0.285	0.336	2.8
89	28.7601	77.0653	22	Barwala	0.117	0.230	0.262	0.312	2.7
90	28.7371	77.0386	23	Karala	0.118	0.220	0.303	0.369	3.1
91	28.7439	77.0517	23	Karala	0.137	0.242	0.284	0.321	2.3
92	28.7378	77.0714	23	Pansali	0.112	0.250	0.303	0.385	3.4
93	28.7200	77.0383	23	Mohammadpur Majar	0.119	0.223	0.282	0.363	3.0
94	28.7257	77.0563	23	Karala	0.127	0.237	0.311	0.381	3.0
95	28.7200	77.0711	23	Rohini Sec-23	0.121	0.198	0.244	0.274	2.3
96	28.7106	77.0489	23	Mubarakpur Dabas	0.121	0.218	0.268	0.342	2.8
97	28.6988	77.0438	24	Kirari Suleman Nagar	0.125	0.191	0.185	0.232	1.9
98	28.6558	77.0401	24	Ranhola Shafipur	0.114	0.193	0.237	0.290	2.6
99	28.6828	77.0297	24	Mundka	0.131	0.216	0.220	0.269	2.1
100	28.5550	77.0394	26	Dwarka Sec-25	0.104	0.222	0.264	0.310	3.0
101	28.5946	77.0352	26	Dwarka Sec-13	0.108	0.221	0.284	0.331	3.1
102	28.5949	77.0543	26	Dwarka Sec-5	0.115	0.206	0.264	0.325	2.8
103	28.5939	77.0711	26	Dwarka Sec-6	0.113	0.207	0.262	0.302	2.7
104	28.5730	77.0528	26	Dwarka Sec-19	0.118	0.205	0.244	0.298	2.5
105	28.5814	77.0737	26	Pappan Kalan	0.116	0.194	0.247	0.274	2.4
106	28.5597	77.0262	26	Dwarka Sec-24	0.111	0.208	0.264	0.288	2.6
107	28.5498	77.0540	26	Dwarka Sec-26	0.091	0.202	0.263	0.299	3.3
108	28.5550	77.0675	26	Dwarka Sec-21	0.090	0.207	0.242	0.272	3.0
109	28.5378	77.0517	27	Dwarka Sec-27	0.092	0.200	0.245	0.280	3.0
110	28.8658	77.0967	28	Mamurpur	0.147	0.224	0.310	0.424	2.9
111	28.8544	77.1225	28	Mamurpur	0.133	0.211	0.310	0.406	3.1
112	28.8544	77.1018	28	Mamurpur	0.107	0.207	0.271	0.355	3.3
113	28.8655	77.1113	28	Mamurpur	0.148	0.201	0.296	0.403	2.7
114	28.8261	77.1069	29	Narela	0.105	0.191	0.276	0.369	3.5
115	28.8147	77.0856	29	Bhorgarh	0.120	0.226	0.287	0.384	3.2
116	28.8431	77.0881	29	Narela	0.118	0.239	0.274	0.357	3.0
117	28.8173	77.0976	29	Rajpur Kalan	0.102	0.195	0.251	0.308	3.0
118	28.8327	77.0921	29	Bhorgarh	0.139	0.256	0.296	0.366	2.6

119	28.8336	77.1169	29	Tikri Khurd	0.103	0.185	0.278	0.368	3.6
120	28.8053	77.0972	29	Holambi Kalan	0.143	0.209	0.269	0.409	2.9
121	28.8172	77.1165	29	Shahpur Garhi	0.102	0.225	0.253	0.290	2.8
122	28.7884	77.0819	30	Naya Bansh	0.118	0.232	0.256	0.307	2.6
123	28.7500	77.0765	30	Pehladpur Banger	0.116	0.219	0.247	0.296	2.6
124	28.7932	77.0975	30	Holambi Khurd	0.122	0.228	0.264	0.323	2.6
125	28.7958	77.1052	30	Holambi Khurd	0.113	0.238	0.294	0.332	2.9
126	28.7731	77.0923	30	Khera Khurd	0.116	0.235	0.288	0.328	2.8
127	28.7806	77.1125	30	Khera Khurd	0.138	0.216	0.281	0.373	2.7
128	28.7556	77.0921	30	Pehladpur Banger	0.116	0.228	0.266	0.308	2.6
129	28.7561	77.1131	30	Sirsapur village	0.110	0.220	0.250	0.324	3.0
130	28.7244	77.0867	31	Rohini Sec-25	0.119	0.201	0.243	0.278	2.3
131	28.7283	77.1187	31	Rohini Sec-12	0.120	0.186	0.213	0.268	2.2
132	28.7161	77.0957	31	Rithala	0.108	0.196	0.208	0.271	2.5
133	28.7098	77.1119	31	Rohini Sec-6, Blk-F	0.129	0.199	0.264	0.381	3.0
134	28.7464	77.1042	31	Shiv Vihar	0.120	0.194	0.216	0.273	2.3
135	28.7079	77.0798	31	Sultanpuri	0.106	0.220	0.250	0.301	2.8
136	28.7016	77.0904	31	Mangolpuri Blk-Y	0.108	0.217	0.244	0.313	2.9
137	28.6969	77.0779	32	Sultanpuri	0.109	0.206	0.253	0.315	2.9
138	28.6970	77.1136	32	Pushpanjali Enclave, Rohini	0.101	0.229	0.253	0.310	3.1
139	28.6508	77.0857	32	Gurunanak Nagar	0.113	0.180	0.210	0.265	2.3
140	28.6583	77.1042	32	Khayala	0.123	0.212	0.282	0.357	2.9
141	28.6800	77.0742	32	Nangloi Jat	0.114	0.183	0.270	0.383	3.4
142	28.6881	77.0956	32	Mangolpuri	0.119	0.178	0.214	0.334	2.8
143	28.6661	77.0917	32	Sunder Aptt, Sunder Vihar	0.112	0.220	0.270	0.348	3.1
144	28.6670	77.1023	32	Jwala Heri, Paschim Vihar	0.126	0.202	0.249	0.338	2.7
145	28.6439	77.1083	33	Park, Near Tagor Garden	0.099	0.182	0.200	0.234	2.4
146	28.6306	77.1069	33	Tihar Village	0.095	0.175	0.212	0.237	2.5
147	28.6367	77.1225	33	Subhash Nagar, Blk-10	0.100	0.161	0.184	0.195	2.0
148	28.8436	77.1304	38	Singhola	0.117	0.229	0.288	0.396	3.4
149	28.8283	77.1450	38	Hamidpur	0.125	0.213	0.240	0.297	2.4
150	28.8423	77.1704	38	Tajpur Kalan	0.118	0.201	0.267	0.363	3.1
151	28.8269	77.1296	38	Khanpur	0.122	0.221	0.259	0.282	2.3
152	28.8135	77.1429	38	Bankoli	0.108	0.172	0.243	0.379	3.5
153	28.8194	77.1551	38	Hamidpur	0.113	0.179	0.261	0.347	3.1
154	28.8277	77.1702	38	Bakhtawarpur	0.106	0.186	0.262	0.351	3.3
155	28.8031	77.1313	38	Alipur	0.135	0.228	0.267	0.356	2.6
156	28.8072	77.1663	38	Bakhtawarpur	0.136	0.206	0.253	0.288	2.1
157	28.8108	77.1564	38	Bankoli	0.136	0.199	0.265	0.353	2.6
158	28.8180	77.1744	38	Bakhtawarpur	0.113	0.232	0.252	0.329	2.9
159	28.7890	77.1301	39	Alipur	0.127	0.216	0.273	0.390	3.1

160	28.7973	77.1495	39	Alipur	0.104	0.237	0.252	0.296	2.8
161	28.7938	77.1663	39	Mukhmelpur	0.105	0.209	0.254	0.318	3.0
162	28.7820	77.1454	39	Budhpur, Bijapur	0.133	0.219	0.268	0.340	2.5
163	28.7796	77.1686	39	Near Ibrahampur	0.111	0.234	0.287	0.345	3.1
164	28.7745	77.1335	39	Khera Ghari	0.123	0.224	0.286	0.339	2.7
165	28.7726	77.1501	39	Kadipur	0.132	0.204	0.281	0.331	2.5
166	28.7634	77.1722	39	Nathupura	0.113	0.198	0.255	0.368	3.3
167	28.7621	77.1524	39	Near Swaroopnagar	0.127	0.203	0.220	0.303	2.4
168	28.7563	77.1364	39	Rana Park, Sirsapur	0.131	0.203	0.244	0.321	2.5
169	28.7535	77.1654	39	Swaroopnagar, New Colony	0.098	0.184	0.220	0.305	3.1
170	28.7881	77.1552	39	Mukhmelpur	0.108	0.222	0.267	0.298	2.8
171	28.7688	77.1625	39	Kadipur	0.128	0.208	0.261	0.286	2.2
172	28.7429	77.1526	40	Sanjay Gandhi Transport Nagar Blk AG	0.115	0.179	0.200	0.226	2.0
173	28.7393	77.1358	40	Rohini Sec-18, Blk A, Pkt8	0.115	0.229	0.271	0.303	2.6
174	28.7364	77.1646	40	Bhalsawa	0.107	0.178	0.230	0.284	2.7
175	28.7286	77.1493	40	Haiderpur	0.112	0.185	0.239	0.285	2.6
176	28.7096	77.1280	40	Rohini Sec-14	0.125	0.204	0.238	0.276	2.2
177	28.7108	77.1436	40	North Pitampura, Pkt-NU	0.110	0.218	0.229	0.292	2.7
178	28.7194	77.1601	40	Sahipur, Near Shalimar Bagh	0.106	0.182	0.208	0.250	2.4
179	28.7191	77.1747	40	Aadarsh Nagar	0.093	0.223	0.256	0.322	3.5
180	28.7041	77.1551	40	Pitampura, Blk-TP Pocket	0.109	0.194	0.230	0.287	2.6
181	28.7056	77.1744	40	Wazirpur Indl area, Blk-B	0.110	0.162	0.227	0.318	2.9
182	28.6928	77.1249	41	Saraswati Vihar	0.117	0.229	0.271	0.331	2.8
183	28.6981	77.1419	41	South Pitampura, Blk Pocket-KD	0.121	0.154	0.208	0.316	2.6
184	28.6953	77.1631	41	ashok Vihar, Ph-I, Blk-E	0.119	0.189	0.212	0.238	2.0
185	28.6597	77.1302	41	Near Raja Garden	0.120	0.199	0.208	0.232	1.9
186	28.6833	77.1450	41	Sakurpur Village	0.120	0.211	0.224	0.251	2.1
187	28.6703	77.1417	41	East Punjabi Bagh	0.116	0.234	0.254	0.306	2.6
188	28.6708	77.1581	41	Karampura Block, Indl Area	0.125	0.200	0.212	0.259	2.1
189	28.5431	77.1327	44	CISF Rd, Mahipalpur Extn	0.094	0.199	0.229	0.275	2.9
190	28.4972	77.1325	45	Ghitorni Village	0.095	0.171	0.193	0.274	2.9
191	28.4964	77.1622	45	Sultanpur Village	0.085	0.174	0.225	0.275	3.2
192	28.4858	77.1331	45	Saink Nivas MES, Ghitorni	0.106	0.184	0.205	0.236	2.2
193	28.4839	77.1628	45	HK Farm House, near Godaipur	0.081	0.163	0.197	0.282	3.5
194	28.4706	77.1631	45	Jaunapur	0.090	0.184	0.226	0.262	2.9
195	28.4440	77.1464	46	Farm house, Mandi Village	0.094	0.189	0.245	0.307	3.3
196	28.4416	77.1347	46	KH No.66/6, Mandi Village	0.085	0.185	0.243	0.309	3.7
197	28.4400	77.1636	46	SEPAL Farm Dera, Mandi Rd, Mandi	0.094	0.184	0.229	0.267	2.8
198	28.8441	77.1848	48	MCD School, Palla	0.122	0.215	0.229	0.313	2.6
199	28.8455	77.2001	48	Palla	0.102	0.173	0.225	0.301	2.9

201 28.8308 77.1986 48 School Imagia 0.105 0.205 0.218 0.303 2.9 202 28.8175 77.2144 48 Palla Police Post 0.107 0.168 0.233 0.332 3.1 203 28.778 77.194 48 Nor La Bourd Palla 0.109 0.182 0.244 0.234 0.302 2.8 205 28.7767 77.1877 49 Hiranki Vulge 0.113 0.155 0.249 0.238 2.5 206 28.7764 77.197 49 Near Shank 2.2, Hiranki Vilage 0.123 0.266 0.244 0.238 2.45 206 28.7464 77.197 49 Stank Dur 0.111 0.185 0.249 0.302 2.5 211 28.757 77.192 49 Stank Dur 0.111 0.185 0.244 0.309 2.5 211 28.740 77.197 49 Stank Dur 0.112 0.113 0.255 0.364 3	200	28.8294	77.1788	48	Bakhtawarpur	0.101	0.221	0.254	0.326	3.2
202 28.815 77.2134 48 Pala Police Port 0.107 0.168 0.233 0.332 3.1 203 28.8167 77.1904 48 Ner Ja Board Palla 0.109 0.182 0.264 0.308 2.8 204 28.798 77.1807 49 Hiranki Village 0.111 0.214 0.249 0.308 2.8 205 28.708 77.1875 49 Uttardihand Colony 0.133 0.195 0.249 0.338 2.5 206 28.796 77.191 49 Neer Shack 22, Hiranki Village 0.133 0.213 0.241 0.285 2.1 208 28.7707 77.198 49 Tedi Dalutpor 0.111 0.185 0.234 0.308 2.8 210 28.780 77.1984 49 Stampor Majra 0.124 0.195 0.234 0.308 2.8 211 28.780 77.194 49 Stampor Majra 0.102 0.164 0.201 0.476 4.7	201	28.8308	77.1986	48	·	0.105	0.205	0.218	0.303	2.9
203 28.8167 77.1994 48 Near Jal Board Palla 0.199 0.182 0.264 0.324 3.0 206 28.7708 77.1897 49 Hiranki Village 0.131 0.214 0.249 0.338 2.25 205 28.708 77.1875 49 Uttarakhand Coloney 0.133 0.186 0.259 0.341 2.5 206 28.7303 77.1235 49 Shank Ko.1, Burrari village 0.133 0.213 0.241 0.285 2.1 206 28.730 77.1998 49 Tedi Daulatpur 0.133 0.213 0.241 0.285 2.1 208 28.757 77.1992 49 Belingur Majra 0.111 0.186 0.249 0.347 3.1 210 28.764 77.1974 49 Belingur Majra 0.112 0.166 0.249 0.347 3.1 211 28.763 77.1943 50 Sant Kagar 0.102 0.164 0.201 0.476 4.7 <td>202</td> <td>28.8175</td> <td>77.2134</td> <td>48</td> <td>Ŭ</td> <td>0.107</td> <td>0.168</td> <td>0.233</td> <td>0.332</td> <td>3.1</td>	202	28.8175	77.2134	48	Ŭ	0.107	0.168	0.233	0.332	3.1
204 28.797 77.1807 49 Hiranki Village 0.111 0.214 0.249 0.308 2.8 205 28.708 77.1875 49 Uttrankhand Colney 0.335 0.186 0.259 0.341 2.5 206 28.703 77.2153 49 Shank No.1, Burari Village 0.133 0.218 0.244 0.343 2.7 207 28.7946 77.1919 49 Near Shank 2.2, Hiranki Village 0.133 0.213 0.241 0.285 2.1 209 28.7810 77.1838 49 Resid.area, Hiranki, Nribrahampur 0.111 0.185 0.259 0.364 3.3 210 28.7757 77.1992 49 Silampur Majra 0.124 0.195 0.244 0.309 2.5 211 28.7067 77.1934 50 Sant Nagar 0.102 0.169 0.223 0.366 3.6 212 28.7445 77.1943 50 Nat Nagar 0.102 0.169 0.226 0.210	203	28.8167	77.1994	48		0.109	0.182	0.264	0.324	3.0
206 28,769 77.215 49 Shark Ko.1, Burrari village 0.133 0.195 0.249 0.338 2.5 207 28,7948 77.1911 49 Near Shark 22, Hiranki Village 0.133 0.213 0.241 0.225 2.1 208 28,784 77.1998 49 Tecil Daulstrum 0.133 0.213 0.241 0.225 2.1 208 28,781 77.1992 49 Silampur Majra 0.114 0.195 0.234 0.309 2.5 211 28,757 77.1992 49 Silampur Majra 0.114 0.195 0.244 0.309 2.5 211 28,7445 77.1376 49 Behind Shari temple, Burari 0.113 0.206 0.249 0.366 3.6 212 28,7445 77.1374 50 Sant Magre 0.100 0.164 0.201 0.476 4.7 214 28,7313 77.2047 50 Reado Coloney, Ne Dhaka Village 0.104 0.128 0.233	204	28.7978	77.1807	49		0.111	0.214	0.249	0.308	2.8
206 28.7639 77.2153 49 Shank No.1, Burari village 0.133 0.195 0.249 0.338 2.5 207 28.7948 77.1911 49 Near Shank 22, Hranki Village 0.125 0.206 0.254 0.343 2.7 208 28.7946 77.1988 49 Tedi Daulatpur 0.133 0.213 0.241 0.285 2.1 209 28.7810 77.1888 49 Resid, area, Hiranki, Nr Ibrahampur 0.111 0.185 0.259 0.364 3.3 210 28.7604 77.1972 49 Behind Shani temple, Burari 0.113 0.206 0.249 0.347 3.1 212 28.744 77.1943 50 Sant Regar 0.102 0.169 0.282 0.366 3.6 212 28.7445 77.1943 50 Nar Model Town 0.100 0.154 0.201 0.476 4.7 216 28.736 77.2047 50 Harodo Jany Coloney, To Dal32 0.126 0.218 <td< td=""><td>205</td><td>28.7708</td><td>77.1875</td><td>49</td><td></td><td>0.135</td><td>0.186</td><td>0.259</td><td>0.341</td><td>2.5</td></td<>	205	28.7708	77.1875	49		0.135	0.186	0.259	0.341	2.5
208 28.794 77.198 49 Tedi Dauka Li manik ninge 0.133 0.213 0.241 0.285 2.1 200 28.7810 77.1838 49 Resid. area, Hiranki, Nr Ibrahampur 0.111 0.185 0.259 0.364 3.3 210 28.7757 77.1992 49 Slampur Majra 0.112 0.195 0.234 0.309 2.5 211 28.764 77.1976 49 Behind Shari temple, Burari 0.113 0.206 0.249 0.347 3.1 212 28.744 77.1374 50 Sant Nagar 0.100 0.164 0.229 0.366 3.6 213 28.7144 77.1374 50 Radio Coloney, Nr Dhaka Village 0.104 0.130 0.215 0.267 2.6 214 28.733 77.2105 50 Nr Milan Vihar, Burari 0.125 0.212 0.268 0.310 2.5 218 28.793 77.2105 50 Nirankari Ground, nr Jharoda Majra 0.104 0.176	206	28.7639	77.2153	49	Shank No.1, Burari village	0.133	0.195	0.249	0.338	2.5
Instruction Instruction Instruction Instruction Instruction 209 28.780 77.183 49 Resid. area, Hiranki, Nr Ibrahampur 0.111 0.185 0.229 0.364 3.3 210 28.7757 77.1992 49 Silampur Majra 0.124 0.195 0.234 0.309 2.5 211 28.7604 77.1974 49 Belnid Shant temple, Burari 0.112 0.169 0.282 0.366 3.6 213 28.7445 77.1943 50 Sant Nagar 0.100 0.164 0.201 0.476 4.7 214 28.7335 77.2047 50 Radio Coloney, Nr Dhaka Village 0.104 0.193 0.215 0.267 2.6 215 28.7331 77.1810 50 Near Jahangtropri Bik-Jic 0.101 0.204 0.223 0.268 0.310 3.1 216 28.7331 77.2185 50 Nr Milan Vihar, Burari 0.125 0.138 0.223 0.266 2.7	207	28.7948	77.1911	49	Near Shank 22, Hiranki Village	0.125	0.206	0.254	0.343	2.7
Clin Resid. area, Hiranki, Kr Ibrahampur Clin Clin Clin 210 28.7757 77.1992 49 Silampur Majra 0.124 0.195 0.234 0.309 2.5 211 28.7664 77.1976 49 Behind Shani temple, Burari 0.113 0.206 0.242 0.366 3.6 213 28.7144 77.1874 50 Nr Model Town 0.100 0.164 0.201 0.476 4.7 214 28.7357 77.2047 50 Radio Coloney, Nr Dhaka Village 0.104 0.139 0.215 0.267 2.6 216 28.733 77.1810 50 Near Jahangirpuri Bik-JIC 0.101 0.204 0.239 0.310 3.1 216 28.733 77.2185 50 Nr Milan Vihar, Burari 0.125 0.218 0.268 0.310 3.1 217 28.7031 77.1985 50 Nr Milan Vihar, Burari 0.125 0.210 0.265 0.387 3.7 219 28.	208	28.7946	77.1998	49	Tedi Daulatpur	0.133	0.213	0.241	0.285	2.1
211 28.7604 77.1976 49 Behingen Ruge 0.113 0.206 0.249 0.347 3.1 212 28.7445 77.1943 50 Sant Nagar 0.102 0.169 0.282 0.366 3.6 213 28.7144 77.1874 50 Nr Model Town 0.100 0.164 0.201 0.476 4.7 214 28.7315 77.2047 50 Radio Coloney, Nr Dhaka Village 0.104 0.193 0.215 0.267 2.6 215 28.7319 77.1810 50 Near Jahangirpuri BiL-JIC 0.101 0.204 0.239 0.310 3.1 216 28.736 77.2064 50 Jharoda Dairy Coloney 0.125 0.212 0.268 0.310 2.5 218 28.7260 77.1939 50 Nirankari Ground, nr Jharoda Majra 0.104 0.176 0.265 0.387 3.7 219 28.7059 77.2210 50 Timarpur 0.109 0.186 0.212 0.24	209	28.7810	77.1838	49	Resid. area, Hiranki, Nr Ibrahampur	0.111	0.185	0.259	0.364	3.3
121 28.7445 77.1943 50 Sant Ngar 0.102 0.169 0.282 0.366 3.6 213 28.7144 77.1874 50 Nr Model Town 0.100 0.164 0.201 0.476 4.7 214 28.7135 77.2047 50 Radio Coloney, Nr Dhaka Village 0.101 0.204 0.239 0.310 3.1 216 28.7336 77.2064 50 Jharoda Dairy Coloney 0.125 0.198 0.253 0.288 2.3 217 28.7331 77.2185 50 Nr Milan Vihar, Burari 0.125 0.198 0.253 0.288 0.310 2.5 218 28.7260 77.1399 50 Nirankari Ground, nr Jharoda Majra 0.104 0.176 0.265 0.387 3.7 219 28.7031 77.1966 50 Model Town 0.099 0.223 0.246 2.2 210 28.6793 77.205 51 Chil Ines 0.102 0.199 0.232 0.265	210	28.7757	77.1992	49	Silampur Majra	0.124	0.195	0.234	0.309	2.5
213 28.7144 77.1874 50 Nr Model Town 0.100 0.164 0.201 0.476 4.7 214 28.7135 77.2047 50 Radio Coloney, Nr Dhaka Village 0.104 0.193 0.215 0.267 2.6 215 28.7319 77.1810 50 Near Jahangirpuri Bik-JIC 0.101 0.204 0.239 0.310 3.1 216 28.7336 77.2064 50 Jharoda Dairy Coloney 0.125 0.198 0.253 0.288 2.3 217 28.7331 77.2185 50 Nr Milan Vihar, Burari 0.125 0.212 0.268 0.310 2.5 218 28.760 77.1939 50 Nirankari Ground, nr Jharoda Majra 0.104 0.176 0.265 0.387 3.7 219 28.7059 77.210 50 Timarpur 0.109 0.186 0.212 0.246 2.2 221 28.692 77.1978 51 C Colony 0.097 0.199 0.255 <td< td=""><td>211</td><td>28.7604</td><td>77.1976</td><td>49</td><td>Behind Shani temple, Burari</td><td>0.113</td><td>0.206</td><td>0.249</td><td>0.347</td><td>3.1</td></td<>	211	28.7604	77.1976	49	Behind Shani temple, Burari	0.113	0.206	0.249	0.347	3.1
214 28.7135 77.2047 50 Radio Coloney, Nr Dhaka Village 0.104 0.193 0.215 0.267 2.6 215 28.7319 77.1810 50 Near Jahangirpuri Bik-JIC 0.101 0.204 0.239 0.310 3.1 216 28.7336 77.2064 50 Jharoda Dairy Coloney 0.125 0.198 0.253 0.288 2.3 217 28.7331 77.2185 50 Nr Milan Vihar, Burari 0.125 0.212 0.268 0.310 2.5 218 28.7260 77.1939 50 Nirankari Ground, nr Jharoda Majra 0.104 0.176 0.265 0.387 3.7 219 28.7059 77.2210 50 Timarpur 0.109 0.186 0.212 0.246 2.2 221 28.6962 77.2104 51 Khalsa College, Nr Univ campus 0.105 0.198 0.216 0.310 3.0 222 28.6962 77.1978 51 CC Colony 0.097 0.199 0	212	28.7445	77.1943	50	Sant Nagar	0.102	0.169	0.282	0.366	3.6
215 28.7319 77.1810 50 Near Jahangrpuri Bik-JIC 0.101 0.204 0.239 0.310 3.1 216 28.7336 77.2064 50 Jharoda Dairy Coloney 0.125 0.198 0.253 0.288 2.3 217 28.7331 77.2185 50 Nr Milan Vihar, Burari 0.125 0.212 0.268 0.310 2.5 218 28.7260 77.1939 50 Nirankari Ground, nr Jharoda Majra 0.104 0.176 0.265 0.387 3.7 220 28.7059 77.2210 50 Timarpur 0.109 0.186 0.212 0.246 2.2 221 28.6793 77.205 51 Civil Lines 0.102 0.199 0.243 0.293 2.9 222 28.6962 77.1104 51 Khalsa College, Nr Univ campus 0.105 0.198 0.216 0.310 3.0 222 28.6896 77.1878 51 CC Colony 0.097 0.199 0.232	213	28.7144	77.1874	50	Nr Model Town	0.100	0.164	0.201	0.476	4.7
216 28.7336 77.2064 50 Jharoda Dairy Coloney 0.125 0.198 0.253 0.288 2.3 217 28.7331 77.2185 50 Nr Milan Vihar, Burari 0.125 0.212 0.268 0.310 2.5 218 28.7260 77.1939 50 Nirankari Ground, nr Jharoda Majra 0.104 0.176 0.265 0.387 3.7 219 28.7031 77.1966 50 Model Town 0.099 0.223 0.200 0.266 2.7 220 28.7059 77.2210 50 Timarpur 0.109 0.186 0.212 0.246 2.2 221 28.6793 77.2205 51 Civil Lines 0.102 0.190 0.243 0.293 2.9 222 28.692 77.1978 51 CC Colony 0.097 0.199 0.255 0.310 3.0 223 28.649 77.1874 51 Near Satyavati Colony 0.094 0.199 0.223 0.265 2	214	28.7135	77.2047	50	Radio Coloney, Nr Dhaka Village	0.104	0.193	0.215	0.267	2.6
217 28.7331 77.2185 50 Nr Milan Vihar, Burari 0.125 0.212 0.268 0.310 2.5 218 28.7260 77.1939 50 Nirankari Ground, nr Jharoda Majra 0.104 0.176 0.265 0.387 3.7 219 28.7031 77.1936 50 Model Town 0.099 0.223 0.230 0.266 2.7 220 28.7059 77.2210 50 Timarpur 0.109 0.186 0.212 0.246 2.2 221 28.6973 77.2205 51 Civil Lines 0.102 0.190 0.243 0.293 2.9 222 28.6962 77.1978 51 CC Colony 0.097 0.199 0.225 0.310 3.2 224 28.6893 77.1784 51 Near Satyavati Colony 0.094 0.199 0.223 0.265 2.8 225 28.6788 77.1878 51 Shiv Temp, Fakira Bagh, Shastri Nagar 0.111 0.177 0.263 0.303<	215	28.7319	77.1810	50	Near Jahangirpuri Blk-JJC	0.101	0.204	0.239	0.310	3.1
218 28.7260 77.1939 50 Nirankari Ground, nr Jharoda Majra 0.104 0.176 0.265 0.387 3.7 219 28.7031 77.1966 50 Model Town 0.099 0.223 0.230 0.266 2.7 220 28.7059 77.2210 50 Timarpur 0.109 0.186 0.212 0.246 2.2 221 28.6793 77.2205 51 Civil Lines 0.102 0.190 0.243 0.293 2.9 222 28.6962 77.104 51 khalsa College, Nr Univ campus 0.105 0.198 0.216 0.310 3.0 224 28.6896 77.1834 51 Near Satyavati Colony 0.094 0.199 0.232 0.265 2.8 225 28.6478 77.1834 51 Azad Market 0.111 0.177 0.263 0.303 2.7 226 28.6580 77.203 51 Roopnager Bik-6 0.112 0.216 0.279 0.312 <	216	28.7336	77.2064	50	Jharoda Dairy Coloney	0.125	0.198	0.253	0.288	2.3
Image: Construction of the second structure Nirankari Ground, nr Jharoda Majra Image: Constructure Image: Constructure <td>217</td> <td>28.7331</td> <td>77.2185</td> <td>50</td> <td>Nr Milan Vihar, Burari</td> <td>0.125</td> <td>0.212</td> <td>0.268</td> <td>0.310</td> <td>2.5</td>	217	28.7331	77.2185	50	Nr Milan Vihar, Burari	0.125	0.212	0.268	0.310	2.5
220 28.7059 77.2210 50 Timarpur 0.109 0.186 0.212 0.246 2.2 221 28.6793 77.2205 51 Civil Lines 0.102 0.190 0.243 0.293 2.9 222 28.6962 77.2104 51 Khalsa College, Nr Univ campus 0.105 0.198 0.216 0.310 3.0 223 28.6893 77.1978 51 CC Colony 0.097 0.199 0.232 0.265 2.8 224 28.6896 77.1834 51 Near Satyavati Colony 0.094 0.199 0.232 0.265 2.8 225 28.6478 77.1878 51 Shiv Temp, Fakira Bagh, Shastri Nagar 0.114 0.218 0.279 0.312 2.7 226 28.6680 77.203 51 Roopnagar Blk-6 0.112 0.216 0.279 0.322 2.9 228 28.6680 77.203 51 Civil Lines, Nr Tis Hazari 0.108 0.214 0.228 0.2	218	28.7260	77.1939	50	Nirankari Ground, nr Jharoda Majra	0.104	0.176	0.265	0.387	3.7
221 28.6793 77.2205 51 Civil Lines 0.102 0.190 0.243 0.293 2.9 222 28.6962 77.2104 51 Khalsa College, Nr Univ campus 0.105 0.198 0.216 0.310 3.0 223 28.6962 77.2104 51 CC Colony 0.097 0.199 0.255 0.310 3.2 224 28.6896 77.1834 51 Near Satyavati Colony 0.094 0.199 0.232 0.265 2.8 225 28.6478 77.2109 51 Azad Market 0.111 0.177 0.263 0.303 2.7 226 28.6788 77.1878 51 Shiv Temp, Fakira Bagh, Shastri Nagar 0.114 0.216 0.279 0.312 2.7 227 28.6850 77.2033 51 Roopnagar Blk-6 0.112 0.216 0.279 0.322 2.9 228 28.6680 77.208 51 Civil Lines, Nr Tis Hazari 0.108 0.214 0.228 <td< td=""><td>219</td><td>28.7031</td><td>77.1966</td><td>50</td><td>Model Town</td><td>0.099</td><td>0.223</td><td>0.230</td><td>0.266</td><td>2.7</td></td<>	219	28.7031	77.1966	50	Model Town	0.099	0.223	0.230	0.266	2.7
222 28.6962 77.2104 51 Khalsa College, Nr Univ campus 0.105 0.198 0.216 0.310 3.0 223 28.6993 77.1978 51 CC Colony 0.097 0.199 0.255 0.310 3.2 224 28.6896 77.1834 51 Near Satyavati Colony 0.094 0.199 0.232 0.265 2.8 225 28.6478 77.2109 51 Azad Market 0.111 0.177 0.263 0.303 2.7 226 28.6788 77.1878 51 Shiv Temp, Fakira Bagh, Shastri Nagar 0.114 0.218 0.279 0.312 2.7 226 28.6788 77.1878 51 Shiv Temp, Fakira Bagh, Shastri Nagar 0.114 0.218 0.279 0.312 2.7 227 28.6860 77.203 51 Civil Lines, Nr Tis Hazari 0.108 0.214 0.228 0.258 2.4 229 28.508 77.1910 54 Lado Sarai 0.090 0.166 0.	220	28.7059	77.2210	50	Timarpur	0.109	0.186	0.212	0.246	2.2
223 28.6893 77.1978 51 CC Colony 0.097 0.199 0.255 0.310 3.2 224 28.6896 77.1834 51 Near Satyavati Colony 0.094 0.199 0.232 0.265 2.8 225 28.6478 77.1209 51 Azad Market 0.111 0.177 0.263 0.303 2.7 226 28.6788 77.1878 51 Shiv Temp, Fakira Bagh, Shastri Nagar 0.114 0.218 0.279 0.312 2.7 226 28.6788 77.2033 51 Roopnagar Blk-6 0.112 0.216 0.279 0.322 2.9 228 28.6680 77.203 51 Civil Lines, Nr Tis Hazari 0.108 0.214 0.228 0.258 2.4 229 28.5208 77.1910 54 Lado Sarai 0.090 0.166 0.206 0.274 3.1 231 28.5413 77.1829 54 Lal bahadur Vidyapith, Katwariasarai 0.105 0.180 0.213	221	28.6793	77.2205	51	Civil Lines	0.102	0.190	0.243	0.293	2.9
224 28.6896 77.1834 51 Near Satyavati Colony 0.094 0.199 0.232 0.265 2.8 225 28.6478 77.2109 51 Azad Market 0.111 0.177 0.263 0.303 2.7 226 28.6788 77.1878 51 Shiv Temp, Fakira Bagh, Shastri Nagar 0.114 0.218 0.279 0.312 2.7 227 28.6850 77.2033 51 Roopnagar Blk-6 0.112 0.216 0.279 0.322 2.9 228 28.6680 77.2033 51 Civil Lines, Nr Tis Hazari 0.108 0.214 0.228 0.258 2.4 229 28.5208 77.1910 54 Lado Sarai 0.094 0.182 0.234 0.306 3.3 230 28.5413 77.1829 54 Govt Nursery, Adhichini 0.090 0.166 0.206 0.274 3.1 231 28.5413 77.1829 54 Lal bahadur Vidyapith, Katwariasarai 0.105 0.180 0.	222	28.6962	77.2104	51	Khalsa College, Nr Univ campus	0.105	0.198	0.216	0.310	3.0
225 28.6478 77.2109 51 Azad Market 0.111 0.177 0.263 0.303 2.7 226 28.6788 77.1878 51 shiv Temp, Fakira Bagh, Shastri Nagar 0.111 0.218 0.279 0.312 2.7 227 28.6850 77.2033 51 Roopnagar Blk-6 0.112 0.216 0.279 0.322 2.9 228 28.6680 77.2038 51 Civil Lines, Nr Tis Hazari 0.108 0.214 0.228 0.258 2.4 229 28.5208 77.1910 54 Lado Sarai 0.094 0.182 0.234 0.306 3.3 230 28.5340 77.1936 54 Govt Nursery, Adhichini 0.090 0.166 0.206 0.274 3.1 231 28.5413 77.1829 54 Lal bahadur Vidyapith, Katwariasarai 0.105 0.180 0.213 0.251 2.4 232 28.5478 77.1937 54 Rose Garden, Haus Khas 0.104 0.186 0	223	28.6893	77.1978	51	CC Colony	0.097	0.199	0.255	0.310	3.2
226 28.6788 77.1878 51 Shiv Temp, Fakira Bagh, Shastri Nagar 0.114 0.218 0.279 0.312 2.7 227 28.6850 77.2033 51 Roopnagar Blk-6 0.112 0.216 0.279 0.322 2.9 228 28.6680 77.203 51 Civil Lines, Nr Tis Hazari 0.108 0.214 0.228 0.258 2.4 229 28.5208 77.1910 54 Lado Sarai 0.094 0.182 0.234 0.306 3.3 230 28.5413 77.1936 54 Govt Nursery, Adhichini 0.099 0.166 0.206 0.274 3.1 231 28.5413 77.1829 54 Lal bahadur Vidyapith, Katwariasarai 0.105 0.180 0.213 0.251 2.4 232 28.5056 77.2058 54 Neb Sarai, Mehrauli 0.090 0.165 0.190 0.225 2.5 233 28.5478 77.1937 54 Rose Garden, Haus Khas 0.104 0.186	224	28.6896	77.1834	51	Near Satyavati Colony	0.094	0.199	0.232	0.265	2.8
227 28.6850 77.203 51 Roopnagar Blk-6 0.112 0.216 0.279 0.322 2.9 228 28.6680 77.203 51 Civil Lines, Nr Tis Hazari 0.108 0.214 0.228 0.258 2.4 229 28.5208 77.1910 54 Lado Sarai 0.094 0.182 0.234 0.306 3.3 230 28.5340 77.1936 54 Govt Nursery, Adhichini 0.090 0.166 0.206 0.274 3.1 231 28.5413 77.1829 54 Lal bahadur Vidyapith, Katwariasarai 0.105 0.180 0.213 0.251 2.4 232 28.5056 77.2058 54 Neb Sarai, Mehrauli 0.090 0.165 0.190 0.225 2.5 233 28.5478 77.1937 54 Rose Garden, Haus Khas 0.104 0.186 0.249 0.305 3.4 234 28.5387 77.2088 54 Begampur,Malviya Nagar 0.084 0.181 0.250	225	28.6478	77.2109	51	Azad Market	0.111	0.177	0.263	0.303	2.7
228 28.6680 77.2208 51 Civil Lines, Nr Tis Hazari 0.108 0.214 0.228 0.258 2.4 229 28.5208 77.1910 54 Lado Sarai 0.094 0.182 0.234 0.306 3.3 230 28.5340 77.1936 54 Govt Nursery, Adhichini 0.090 0.166 0.206 0.274 3.1 231 28.5413 77.1829 54 Lal bahadur Vidyapith, Katwariasarai 0.105 0.180 0.213 0.251 2.4 232 28.5056 77.2058 54 Neb Sarai, Mehrauli 0.090 0.165 0.190 0.225 2.5 233 28.5478 77.1937 54 Rose Garden, Haus Khas 0.104 0.186 0.238 0.286 2.7 234 28.5387 77.2088 54 Begampur,Malviya Nagar 0.089 0.186 0.249 0.305 3.4 235 28.5387 77.2244 54 Shek Sarai,PhI 0.084 0.181 0.231 </td <td>226</td> <td>28.6788</td> <td>77.1878</td> <td>51</td> <td>Shiv Temp, Fakira Bagh, Shastri Nagar</td> <td>0.114</td> <td>0.218</td> <td>0.279</td> <td>0.312</td> <td>2.7</td>	226	28.6788	77.1878	51	Shiv Temp, Fakira Bagh, Shastri Nagar	0.114	0.218	0.279	0.312	2.7
229 28.5208 77.1910 54 Lado Sarai 0.094 0.182 0.234 0.306 3.3 230 28.5340 77.1936 54 Govt Nursery, Adhichini 0.090 0.166 0.206 0.274 3.1 231 28.5413 77.1829 54 Lal bahadur Vidyapith, Katwariasarai 0.105 0.180 0.213 0.251 2.4 232 28.5056 77.2058 54 Neb Sarai, Mehrauli 0.090 0.165 0.190 0.225 2.5 233 28.5478 77.1937 54 Rose Garden, Haus Khas 0.104 0.186 0.238 0.286 2.7 234 28.5388 77.2088 54 Begampur,Malviya Nagar 0.089 0.186 0.249 0.305 3.4 235 28.5387 77.2244 54 Shek Sarai,PhI 0.084 0.181 0.250 0.319 3.8 236 28.5288 77.2066 54 Hauz Rani Saket 0.085 0.182 0.231	227	28.6850	77.2033	51	Roopnagar Blk-6	0.112	0.216	0.279	0.322	2.9
230 28.5340 77.1936 54 Govt Nursery, Adhichini 0.090 0.166 0.206 0.274 3.1 231 28.5413 77.1829 54 Lal bahadur Vidyapith, Katwariasarai 0.105 0.180 0.213 0.251 2.4 232 28.5056 77.2058 54 Neb Sarai, Mehrauli 0.090 0.165 0.190 0.225 2.5 233 28.5478 77.1937 54 Rose Garden, Haus Khas 0.104 0.186 0.238 0.286 2.7 234 28.5388 77.2088 54 Begampur,Malviya Nagar 0.089 0.186 0.249 0.305 3.4 235 28.5387 77.2044 54 Shek Sarai,PhI 0.084 0.181 0.250 0.319 3.8 236 28.5288 77.2066 54 Hauz Rani Saket 0.085 0.182 0.231 0.281 3.3 237 28.5080 77.1739 54 Kusum Nursery Vasant Kunj 0.086 0.172 0.2	228	28.6680	77.2208	51	Civil Lines, Nr Tis Hazari	0.108	0.214	0.228	0.258	2.4
231 28.5413 77.1829 54 Lal bahadur Vidyapith, Katwariasarai 0.105 0.180 0.213 0.251 2.4 232 28.5056 77.2058 54 Neb Sarai, Mehrauli 0.090 0.165 0.190 0.225 2.5 233 28.5478 77.1937 54 Rose Garden, Haus Khas 0.104 0.186 0.238 0.286 2.7 234 28.5388 77.2088 54 Begampur,Malviya Nagar 0.089 0.186 0.249 0.305 3.4 235 28.5387 77.2044 54 Shek Sarai,PhI 0.084 0.181 0.250 0.319 3.8 236 28.5288 77.2066 54 Hauz Rani Saket 0.085 0.182 0.231 0.281 3.3 237 28.5080 77.1739 54 Kusum Nursery Vasant Kunj 0.086 0.172 0.275 0.329 3.8	229	28.5208	77.1910	54	Lado Sarai	0.094	0.182	0.234	0.306	3.3
Constraint Constra	230	28.5340	77.1936	54	Govt Nursery, Adhichini	0.090	0.166	0.206	0.274	3.1
233 28.5478 77.1937 54 Rose Garden, Haus Khas 0.104 0.186 0.238 0.286 2.7 234 28.5388 77.2088 54 Begampur,Malviya Nagar 0.089 0.186 0.249 0.305 3.4 235 28.5387 77.2044 54 Shek Sarai,PhI 0.084 0.181 0.250 0.319 3.8 236 28.5288 77.2066 54 Hauz Rani Saket 0.085 0.182 0.231 0.281 3.3 237 28.5080 77.1739 54 Kusum Nursery Vasant Kunj 0.086 0.172 0.275 0.329 3.8	231	28.5413	77.1829	54	Lal bahadur Vidyapith, Katwariasarai	0.105	0.180	0.213	0.251	2.4
234 28.5388 77.2088 54 Begampur,Malviya Nagar 0.089 0.186 0.249 0.305 3.4 235 28.5387 77.2244 54 Shek Sarai,PhI 0.084 0.181 0.250 0.319 3.8 236 28.5288 77.2066 54 Hauz Rani Saket 0.085 0.182 0.231 0.281 3.3 237 28.5080 77.1739 54 Kusum Nursery Vasant Kunj 0.086 0.172 0.275 0.329 3.8 238 28.5464 77.2140 54 Kusum Nursery Vasant Kunj 0.086 0.172 0.275 0.329 3.8	232	28.5056	77.2058	54	Neb Sarai, Mehrauli	0.090	0.165	0.190	0.225	2.5
235 28.5387 77.2244 54 Shek Sarai,PhI 0.084 0.181 0.250 0.319 3.8 236 28.5288 77.2066 54 Hauz Rani Saket 0.085 0.182 0.231 0.281 3.3 237 28.5080 77.1739 54 Kusum Nursery Vasant Kunj 0.086 0.172 0.275 0.329 3.8 239 29.5464 77.2140 54 Kusum Nursery Vasant Kunj 0.093 0.104 0.333 0.303	233	28.5478	77.1937	54	Rose Garden, Haus Khas	0.104	0.186	0.238	0.286	2.7
235 28.5387 77.2244 54 Shek Sarai,PhI 0.084 0.181 0.250 0.319 3.8 236 28.5288 77.2066 54 Hauz Rani Saket 0.085 0.182 0.231 0.281 3.3 237 28.5080 77.1739 54 Kusum Nursery Vasant Kunj 0.086 0.172 0.275 0.329 3.8 239 29.5464 77.2140 54 Same Nursery Vasant Kunj 0.093 0.104 0.333 0.303	234	28.5388	77.2088	54	Begampur,Malviya Nagar	0.089	0.186	0.249	0.305	3.4
236 28.5288 77.2066 54 Hauz Rani Saket 0.085 0.182 0.231 0.281 3.3 237 28.5080 77.1739 54 Kusum Nursery Vasant Kunj 0.086 0.172 0.275 0.329 3.8 239 28.5164 77.2110 54 Kusum Nursery Vasant Kunj 0.002 0.104 0.232 0.202 3.8	235	28.5387	77.2244	54	Shek Sarai,PhI	0.084	0.181	0.250	0.319	3.8
	236	28.5288	77.2066	54		0.085	0.182	0.231	0.281	3.3
238 28.5161 77.2119 54 Saket-Bdarpur Rd 0.093 0.194 0.232 0.283 3.0	237	28.5080	77.1739	54	Kusum Nursery Vasant Kunj	0.086	0.172	0.275	0.329	3.8
	238	28.5161	77.2119	54	Saket-Bdarpur Rd	0.093	0.194	0.232	0.283	3.0

239	28.5001	77.2220	54	Sainik Farm, Nr Sangam Vihar	0.104	0.189	0.249	0.304	2.9
240	28.4986	77.1792	55	Near Chhatarpur Mandir	0.088	0.190	0.237	0.287	3.2
241	28.4978	77.1942	55	DDA, Maidan Garhi	0.092	0.169	0.173	0.231	2.5
242	28.4828	77.1806	55	10 Farm, DLF, Chhatarpur	0.103	0.185	0.237	0.279	2.7
243	28.4856	77.1971	55	Rajpur Khurd	0.097	0.182	0.207	0.254	2.6
244	28.4717	77.1922	55	Saharpur Extn, ND	0.095	0.175	0.203	0.237	2.5
245	28.4567	77.2075	55	Forest, Asola Village	0.086	0.187	0.231	0.284	3.3
246	28.7176	77.2510	58	PT School, Wazirabad	0.105	0.181	0.241	0.377	3.6
247	28.7325	77.2325	58	Ramp No.3, Near Jagatpur Bund	0.101	0.175	0.248	0.329	3.2
248	28.7450	77.2559	58	Burari Village	0.113	0.200	0.256	0.321	2.8
249	28.7079	77.2364	58	Pantan Bridge, Wazirabad	0.100	0.219	0.267	0.325	3.3
250	28.7338	77.2657	58	Govt School, Karwal Nagar	0.108	0.220	0.242	0.274	2.5
251	28.7188	77.2664	58	Near Priya Convent Sch, Dayalpur	0.094	0.191	0.233	0.312	3.3
252	28.7039	77.2554	58	Garai Mandu Village	0.113	0.176	0.262	0.359	3.2
253	28.6857	77.2350	59	New Usmanpur Village	0.099	0.233	0.285	0.332	3.4
254	28.6587	77.2401	59	MG Park, Lal Quila	0.115	0.225	0.238	0.293	2.5
255	28.6924	77.2548	59	Pusta-4, Usmanpur	0.086	0.218	0.251	0.314	3.6
256	28.6769	77.2471	59	Opp DMRC off, Shatri Park	0.093	0.210	0.289	0.336	3.6
257	28.6753	77.2692	59	Silampur	0.110	0.208	0.265	0.338	3.1
258	28.6668	77.2503	59	Shastri Park	0.130	0.206	0.209	0.253	2.0
259	28.6589	77.2692	59	SK School, Geeta Colony	0.102	0.194	0.238	0.310	3.0
260	28.7304	77.2814	65	Kali Mandir, Shiv Vihar	0.098	0.216	0.262	0.297	3.0
261	28.7073	77.3232	65	Harsh vihar	0.107	0.177	0.224	0.291	2.7
262	28.7149	77.2815	65	Chamanpark, Johripur	0.107	0.195	0.240	0.301	2.8
263	28.7029	77.3076	65	Nand Nagari	0.106	0.195	0.210	0.261	2.5
264	28.7044	77.2769	65	Gokulpuri colony	0.107	0.184	0.207	0.288	2.7
265	28.7029	77.2962	65	East Gokulpur	0.098	0.192	0.189	0.273	2.8
266	28.6895	77.2893	66	Near Jyoti colony	0.101	0.184	0.231	0.268	2.7
267	28.6925	77.3129	66	Nand Nagari, Blk-E4	0.097	0.197	0.224	0.266	2.7
268	28.6777	77.2984	66	Mansarovar Park	0.105	0.204	0.228	0.268	2.5
269	28.6560	77.2923	66	Arjun Nagar	0.104	0.178	0.208	0.237	2.3
270	28.6653	77.3056	66	Jhilmil Coloney	0.094	0.198	0.212	0.253	2.7
271	28.6537	77.3157	66	Anand Vihar, Blk-C	0.107	0.192	0.232	0.272	2.5
272	28.6192	77.2865	67	Pandav Nagar, Blk-A	0.105	0.171	0.196	0.238	2.3
273	28.6242	77.3001	67	Vinod Nagar West, Blk-D	0.099	0.165	0.192	0.220	2.2
274	28.6092	77.3028	67	Mayur Vihar, Ph-I, Pkt 2	0.092	0.176	0.237	0.289	3.1
275	28.6111	77.3225	67	Durga park Coly, near Kundali	0.095	0.171	0.176	0.240	2.5
276	28.5398	77.2831	69	Park, near Appolo Hosp., Jasola	0.098	0.168	0.204	0.250	2.6
277	28.5234	77.3083	69	near Badarpur Thermal Plant, Khadar	0.086	0.156	0.169	0.238	2.8
278	28.5321	77.2956	69	DDA Park, Sarita Viahar, Blk-D	0.085	0.167	0.212	0.280	3.3
279	28.5412	77.3089	69	Kalindikunj, Jaitpur Road	0.095	0.153	0.195	0.273	2.9

280	28.5322	77.3161	69	DDA park, JJ Colony	0.097	0.160	0.207	0.268	2.8
281	28.5062	77.3017	69	Govt School, near NTPC, Badarpur	0.084	0.143	0.219	0.261	3.1
282	28.5025	77.3141	69	Near Irrigation Dept, Hari Nagar	0.097	0.178	0.239	0.304	3.1
283	28.6281	77.3253	72	Near Gaziur, Blk-D	0.102	0.164	0.193	0.231	2.3
284	28.6121	77.3348	72	Gharoli Dairy Farm, Blk-A	0.096	0.182	0.209	0.237	2.5
285	28.6032	77.3308	72	Near Kundli, Blk-A1	0.098	0.172	0.213	0.235	2.4
286	28.5147	77.3417	73	Jaitpur Extn	0.080	0.160	0.208	0.267	3.3
287	28.5253	77.3313	73	Near Police post, Jaitpur	0.098	0.155	0.209	0.282	2.9
288	28.8746	77.0795	20	Safiabad	0.143	0.241	0.269	0.363	2.5
289	28.8757	77.1114	28	Kundli	0.136	0.224	0.268	0.343	2.5
290	28.8125	77.0875	29	Holambi kalan	0.127	0.239	0.260	0.344	2.7
291	28.8300	77.1229	29	Tikri Khurd	0.108	0.194	0.234	0.264	2.4
292	28.7222	77.1056	31	DCE, Rithala	0.113	0.178	0.213	0.278	2.5
293	28.8183	77.1458	38	Bankoli	0.132	0.186	0.274	0.351	2.7
294	28.7499	77.1763	39	Bhalsawa Dairy	0.134	0.213	0.243	0.310	2.3
295	28.7917	77.1597	39	Mukhmelpur	0.132	0.137	0.198	0.321	2.4
296	28.8417	77.2125	48	Jangola	0.109	0.206	0.268	0.332	3.1
297	28.8056	77.1917	49	Fatehpur Jat	0.106	0.228	0.272	0.346	3.3
298	28.8583	77.2417	49	Sankrot	0.105	0.222	0.275	0.311	3.0
299	28.7083	77.2167	50	Indira Vihar	0.104	0.129	0.153	0.263	2.5
300	28.7427	77.2053	50	Salarpur	0.112	0.191	0.273	0.344	3.1
301	28.6917	77.2292	51	Majnu Ka Tila	0.092	0.141	0.161	0.190	2.1
302	28.7450	77.2442	58	Libaspur	0.105	0.199	0.238	0.286	2.7
303	28.6072	76.8844	3	Mandhela Kalan	0.114	0.191	0.211	0.226	2.0
304	28.5828	76.9311	11	Khera Dabas	0.088	0.165	0.232	0.232	2.6
305	28.5324	76.9461	12	Shikarpur	0.088	0.175	0.203	0.295	3.4
306	28.7872	77.0164	14	Bawana, Khanjawala	0.137	0.260	0.328	0.381	2.8
307	28.6264	77.0197	17	Mohan Garden	0.100	0.188	0.219	0.255	2.5
308	28.7072	77.0322	23	Madanpur Dabas	0.112	0.241	0.275	0.334	3.0
309	28.8714	77.0833	28	Narela	0.132	0.243	0.255	0.319	2.4
310	28.8042	77.1094	29	Holambi Kalan	0.113	0.234	0.294	0.381	3.4
311	28.7347	77.0892	31	Rohini Sec-25	0.112	0.217	0.226	0.286	2.6
312	28.6250	77.0903	33	Janakpuri Blk-B3B	0.098	0.186	0.225	0.247	2.5
313	28.5117	77.1083	35	Rajokri village	0.088	0.156	0.179	0.203	2.3
314	28.8180	77.1744	38	Bakhtawarpur	0.105	0.216	0.262	0.329	3.1
315	28.7535	77.1653	39	Swaroopnagar, New Colony	0.108	0.204	0.256	0.315	2.9
316	28.6828	77.1615	41	Keshavpuram	0.116	0.165	0.193	0.223	1.9
317	28.4717	77.1475	45	Akoi Farm, Jaunapur	0.096	0.185	0.198	0.232	2.4
318	28.6857	77.2159	51	Ridge, Near Univ Campus	0.116	0.218	0.245	0.201	1.7
319	28.6645	77.2074	51	Azadpur Market	0.116	0.200	0.226	0.271	2.3
320	28.6144	77.1763	52	Budha Jayanti Park	0.110	0.182	0.188	0.207	1.9

321	28.5386	77.2092	54	Begampur,Malviya Nagar	0.111	0.191	0.201	0.238	2.1
322	28.5252	77.2215	54	Pushpa Vihar, Sec-1	0.123			0.241	2.0
323	28.4723	77.1860	55	Chandan Hulla	0.079	0.154	0.211	0.262	3.3
324	28.7250	77.2510	58	PTS Wazirabad	0.097	0.181	0.230	0.316	3.3
325	28.5811	77.2313	61	Jawaharlal Nehru Stadium	0.119	0.172	0.194	0.185	1.6
326	28.6029	77.2855	67	Nangal	0.084	0.153	0.198	0.249	2.9
327	28.5325	77.3167	69	JJ Colony, Sarita Vihar	0.080	0.142	0.178	0.266	3.3
328	28.5811	77.2330	61	Jawaharlal Nehru Stadium	0.122	0.177	0.183	0.241	2.0
329	28.5889	77.2596	61	Sarai Kale Khan	0.084			0.288	3.4
330	28.5889	77.2596	61	Sarai Kale Khan	0.086			0.323	3.8
331	28.5963	77.2578	61	Rajiv Gandhi Smriti Van, Nr Zoo	0.088			0.243	2.7
332	28.5997	77.2569	61	Rajiv Gandhi Smriti Van, Nr Zoo	0.100			0.245	2.4
333	28.5976	77.2575	61	Rajiv Gandhi Smriti Van, Nr Zoo	0.084			0.286	3.4
334	28.6783	77.1583	41	Tri Nagar	0.117			0.308	2.6
335	28.6699	77.2704	59	Seelampur	0.097			0.307	3.2
336	28.6783	77.1583	41	Tri Nagar	0.103	0.213	0.219	0.307	3.0
337	28.5524	77.2758	68	Sukhdev Vihar	0.082			0.302	3.7
338	28.5233	77.2279	62	Pushpa Vihar	0.091			0.318	3.5
339	28.5431	77.2113	54	Paschimshila Park, South Blk-S	0.103			0.262	2.5
340	28.6783	77.1583	41	Tri Nagar	0.111			0.309	2.8
341	28.7177	77.1103	31	Rohini Sec-5, Pkt-6	0.092			0.369	4.0
342	28.5248	77.2137	54	Saket	0.103			0.302	2.9
343	28.6813	77.0971	32	Udyog Nagar, Nr Paschim Vihar	0.087			0.307	3.5
344	28.6407	77.2320	60	Ramlila Ground	0.087			0.309	3.5
345	28.4724	77.1860	55	Chandan Hulla	0.098	0.172	0.196	0.253	2.6
346	28.4704	77.2013	55	Saharpur Extn, ND	0.093	0.162	0.232	0.312	3.3
347	28.4458	77.1866	56	Fatehpur Beri	0.078	0.144	0.181	0.234	3.0
348	28.4431	77.2006	56	Bhati Mines	0.095	0.150	0.183	0.253	2.7
349	28.6830	77.1622	41	Keshavpuram	0.108	0.188	0.218	0.253	2.3
350	28.6029	77.2855	67	Nangal	0.078	0.147	0.173	0.205	2.6
351	28.6361	77.2986	67	Indraprastha Extn	0.094	0.181	0.194	0.233	2.5
352	28.6768	77.3123	66	Dilshad Garden, Blk R	0.086	0.189	0.199	0.227	2.6
353	28.6222	77.3388	72	NearMayur Vihar Ph-III	0.107	0.172	0.184	0.245	2.3
354	28.7342	77.0891	31	Rohini Sec-25	0.113	0.000	0.000	0.320	2.8
355	28.5089	77.1083	35	Rajokri village	0.084	0.157	0.180	0.193	2.3
356	28.6379	77.0761	33	Vikaspuri Blk-C	0.111	0.188	0.206	0.253	2.3
357	28.5877	77.0474	26	Dwarka Sec-11	0.109	0.182	0.202	0.241	2.2
358	28.5933	77.0492	26	East of Dwarka Sec-12	0.107	0.190	0.232	0.278	2.6
359	28.6736	77.2981	66	Shahdara	0.100	0.167	0.200	0.240	2.4
360	28.5926	77.0815	34	Nr Palam Village	0.096	0.180	0.188	0.230	2.4
361	28.6175	77.0480	25	Sainik Nagar	0.121	0.183	0.208	0.248	2.0

362	28.5963	77.0788	34	Dwarka Sec-1	0.106	0.174	0.187	0.228	2.2
363	28.6699	77.1389	41	West Punjabi Bagh	0.109	0.194	0.247	0.277	2.5
364	28.5963	77.2578	61	Rajiv Gandhi Smriti Van, Nr Zoo	0.111	0.180	0.219	0.249	2.2
365	28.8197	77.0612	21	Sanoth	0.139	0.227	0.266	0.337	2.4
366	28.6222	77.2042	52	Nr MP's Club, Rakabganj	0.098	0.194	0.198	0.237	2.4
367	28.5300	77.0890	35	Samalka, Nr Kapashera	0.099	0.173	0.193	0.227	2.3
368	28.5449	77.1198	35	Intl Airport Authority, Nr Mahipalpur	0.100	0.184	0.195	0.231	2.3
369	28.5477	77.1250	35	Intl Airport Authority, Nr Mahipalpur	0.098	0.184	0.205	0.241	2.5
370	28.5861	77.0551	26	Dwarka Sec-10	0.114	0.185	0.221	0.250	2.2
371	28.5958	77.1200	34	Sadar Bazar (Delhi Cantt)	0.118	0.165	0.197	0.216	1.8
372	28.7119	77.1601	40	Shalimar Bagh, Pkt-BD	0.111	0.185	0.247	0.269	2.4
373	28.8528	77.0889	29	Narela	0.143	0.232	0.265	0.330	2.3
374	28.6250	76.9231	3	Kair	0.125	0.198	0.224	0.266	2.1
375	28.5917	76.9250	4	Jafarpur Kalan	0.120	0.185	0.221	0.248	2.1
376	28.6417	77.1647	42	West Patel Nagar	0.115	0.212	0.232	0.263	2.3
377	28.6611	77.1458	41	New Motinagar, Blk-17	0.093	0.170	0.194	0.213	2.3
378	28.6431	77.0972	33	Chaukhandi, nr Hind Nagar	0.112	0.182	0.196	0.245	2.2
379	28.6636	77.1433	41	New Motinagar, Blk-B	0.114	0.178	0.191	0.241	2.1
380	28.6919	77.1602	41	Lawrence Rd Coloney, Blk-C-7	0.103	0.198	0.242	0.264	2.6
381	28.6736	77.1931	51	Gulabi Bagh	0.102	0.186	0.244	0.294	2.9
382	28.6797	77.1573	41	Omkar Nagar	0.111	0.184	0.234	0.261	2.4
383	28.6475	77.1797	52	Prasad Nagar, Nr E. Patel nagar	0.109	0.192	0.232	0.260	2.4
384	28.5827	77.0579	26	Dwarka Sec-10	0.114	0.180	0.204	0.242	2.1
385	28.6506	77.3042	66	Karkarduma	0.093	0.160	0.201	0.249	2.7
386	28.6484	77.3046	67	Karkarduma	0.099	0.172	0.218	0.248	2.5
387	28.5807	77.2924	68	Trans Yamuna, nr Chilla	0.090	0.156	0.191	0.240	2.7
388	28.6417	77.2522	60	Rajghat	0.110	0.179	0.230	0.275	2.5
389	28.6681	77.2564	59	Shastri Park, BLK-A	0.124	0.196	0.221	0.248	2.0
390	28.5150	77.2722	62	Close to Tuglakabad Village	0.098	0.184	0.195	0.239	2.4
391	28.5686	77.2436	61	Lajpatnagar, part-ll	0.091	0.168	0.203	0.230	2.5
392	28.5681	77.2189	53	South Ex Part-II	0.093	0.184	0.214	0.254	2.7
393	28.5444	77.2583	62	Kalkaji, Blk-D	0.100	0.181	0.190	0.234	2.4
394	28.5722	77.1708	43	RK Puram, Sec-8	0.097	0.186	0.186	0.223	2.3
395	28.5781	77.1625	43	Anand Niketan, Blk-D	0.108	0.192	0.219	0.249	2.3
396	28.6222	77.2467	60	Mata Sundari Rly Coloney	0.107	0.189	0.240	0.284	2.6
397	28.6903	77.1778	51	Satyawati Coloney, Blk-A, Pkt-A	0.104	0.195	0.220	0.251	2.4
398	28.6556	77.1917	51	Karol Bagh, Blk-D, Pkt52	0.125	0.184	0.254	0.268	2.2
399	28.6083	77.2403	60	Bapa Nagar	0.096	0.174	0.221	0.257	2.7
400	28.6111	77.2264	60	Vigyan Bhawan	0.098	0.167	0.209	0.271	2.8
401	28.6367	77.2064	52	Govt Quarters, Nr Gole Market	0.105	0.202	0.204	0.235	2.2

402	28.6417	77.1508	42	Pusa Institute	0.119	0.203	0.237	0.269	2.3
403	28.5651	77.0783	34	IGI nr Pappan Kalan	0.109	0.184	0.212	0.243	2.2
404	28.6389	77.2375	60	West of F.S.Kotla stadium	0.119	0.179	0.253	0.279	2.4
405	28.6260	77.2099	52	Bangla Saheb Gurudwara	0.104	0.199	0.200	0.234	2.2
406	28.6735	77.2916	66	Makki Sarai	0.099	0.171	0.208	0.240	2.4
407	28.6021	77.1928	52	Chanakyapuri, Nr JLN Memorial Museum	0.103	0.192	0.195	0.224	2.2
408	28.5523	77.2140	53	Siri Fort Sports Complex	0.093	0.178	0.205	0.241	2.6
409	28.5616	77.2242	53	Aayurvugyan Nagar	0.092	0.170	0.205	0.251	2.7
410	28.5677	77.2272	61	Andrews Ganj	0.089	0.186	0.215	0.238	2.7
411	28.6390	77.1316	42	Mansarover Garden, Blk-WZ	0.108	0.201	0.210	0.249	2.3
412	28.5255	77.2120	54	Saket	0.095	0.164	0.198	0.234	2.5
413	28.5862	77.0639	26	Dwarka Sec-10	0.108	0.182	0.217	0.258	2.4
414	28.7982	77.0362	22	Bawana	0.142	0.233	0.258	0.318	2.2
415	28.6805	77.3130	66	Dilshad Garden, Blk-C	0.098	0.167	0.212	0.251	2.6
416	28.7100	77.2835	65	Bhagirath Vihar	0.104	0.168	0.214	0.238	2.3
417	28.6217	77.2440	60	Pragati Maidan	0.099	0.183	0.209	0.257	2.6
418	28.7011	77.3078	65	Mandoli Extn	0.095	0.177	0.216	0.244	2.6
419	28.5417	77.1833	54	Qutub Indl Area	0.098	0.183	0.186	0.227	2.3
420	28.5332	77.3029	69	Madanpur Khadar Village	0.084	0.161	0.189	0.217	2.6
421	28.7135	77.1774	50	Majlis Park	0.108	0.177	0.238	0.260	2.4
422	28.5646	77.2477	61	Lajpat Nagar, Part-IV	0.089	0.168	0.193	0.215	2.4
423	28.7238	77.1353	40	Rohinin Sec-13, nr Vikrant Apartment	0.115	0.186	0.251	0.278	2.4
424	28.5621	77.0769	34	IGI, nr Dwarka Sec-21	0.104	0.177	0.199	0.241	2.3
425	28.6779	77.2274	59	Civil Lines	0.117	0.192	0.237	0.259	2.2
426	28.5730	77.0777	34	Dwarka Sec-8	0.113	0.170	0.200	0.227	2.0
427	28.5867	77.0933	34	Sadh Nagar, Palam coloney	0.110	0.182	0.204	0.249	2.3
428	28.7265	77.1125	31	Rohini Sec-25	0.110	0.205	0.244	0.305	2.8
429	28.7268	77.1136	31	Rohini Sec-25	0.115	0.200	0.251	0.309	2.7
430	28.6444	77.2269	60	Kamla Market	0.099	0.175	0.224	0.263	2.7
431	28.6006	77.0931	33	Mahaveer Enclave-II, nr Kailashpuri west	0.114	0.176	0.204	0.239	2.1
432	28.6150	77.0889	33	Janakpuri Blk C-3	0.111	0.170	0.198	0.253	2.3
433	28.6153	77.0886	33	Janakpuri Blk C-3	0.107	0.178	0.191	0.241	2.3
434	28.6708	77.2903	66	Teli Bara	0.091	0.144	0.171	0.187	2.1
435	28.6683	77.2762	66	Seelampur	0.093	0.161	0.195	0.249	2.7
436	28.7012	77.2888	65	South of Gokulpur	0.100	0.176	0.218	0.248	2.5
437	28.7164	77.2863	65	Nr Kardam Farm, Johripur	0.110	0.177	0.229	0.252	2.3
438	28.6764	77.2889	66	Naveen Shahdara	0.097	0.175	0.215	0.256	2.6
439	28.6764	77.2889	66	Naveen Shahdara	0.096	0.177	0.222	0.249	2.6
440	28.6699	77.2704	59	Seelampur	0.087	0.166	0.195	0.228	2.6
441	28.5979	77.0510	26	Dwarka Sec-4	0.107	0.187	0.228	0.267	2.5

442	28.6806	77.1561	41	Lawrence Rd Indl Area	0.105	0.179	0.228	0.274	2.6
443	28.6708	77.1972	51	Andha Mughal, Nr Gulabi Bagh	0.105	0.186	0.244	0.296	2.8
444	28.6117	77.3103	67	Patparganj, nr Trilokpuri-I	0.094	0.157	0.206	0.224	2.4
445	28.7042	77.3131	65	Mandoli	0.095	0.174	0.217	0.246	2.6
446	28.7931	77.0417	22	Bawana	0.136	0.227	0.270	0.314	2.3
447	28.7019	77.1667	40	Wazirpur Indl Area	0.102	0.197	0.234	0.262	2.6
448	28.5355	77.1626	44	ЛИГ	0.124			0.168	1.4
449	28.4508	77.2094	55	Asola	0.129			0.181	1.4

S.N.	Lat (Deg)	Long (deg)	Sheet No.	Locality name	PGA at Engineering Bedrock	PGA at Ground Surface
1	28.6247	76.9144	3	Kair	0.051	0.1385
2	28.6186	76.8843	3	Mandhela Khurd	0.051	0.1572
3	28.6128	76.8972	3	Mandhela Kalan	0.050	0.1442
4	28.6128	76.9158	3	Kair	0.050	0.1487
5	28.6075	76.8862	3	Mandhela Kalan	0.050	0.1356
6	28.6028	76.9000	3	Mandhela Kalan	0.049	0.1573
7	28.6029	76.9149	3	Jafarpur Kalan	0.049	0.1678
8	28.5953	76.8871	4	Bagargarh	0.048	0.1411
9	28.5591	76.9028	4	Ujwa	0.046	0.1708
10	28.5991	76.9198	4	Jafarpur Kalan	0.050	0.1731
11	28.5766	76.8839	4	Quazipur	0.047	0.1546
12	28.5751	76.9009	4	Shamaspur Khalsa	0.047	0.1292
13	28.5798	76.9129	4	Ujwa	0.047	0.1190
14	28.5647	76.8853	4	Quazipur	0.047	0.1708
15	28.5654	76.9111	4	Ujwa	0.046	0.1565
16	28.5509	76.9115	4	Daryapur Khurd	0.045	0.1179
17	28.8188	76.9738	6	Mungashpur	0.058	0.1618
17	28.8188	76.9528	6	Qutubgarh	0.058	0.1506
18	28.7961	76.9515	7	Qutubgarh	0.057	0.2165
20	28.7673	76.9632	7	Khor Punjab	0.057	0.1762
20	28.7576	76.9466	7	Jonti	0.056	0.1908
22	28.7486	76.9623	8	Jonti	0.056	0.1908
23	28.7203	76.9658	8	Nizampur Rashid	0.054	0.2085
23	28.6923	76.9623	9	Tikri Kalan	0.051	0.1962
24 25	28.6736	76.9623	9	Tikri Kalan	0.051	0.1982
25	28.6816	76.9744	9	Tikri Kalan	0.051	0.1882
20	28.6653	76.9494	9		0.050	0.1467
27	28.6514	76.9342	9	Jharoda Kalan Jharoda Kalan	0.051	0.1464
28 29			9		0.032	
29 30	28.6546 28.6437	76.9598 76.9574	9 10	Jharoda Kalan	0.049	0.1286
30	28.6048		10	Jharoda Kalan	0.049	0.1730
		76.9573		Mitraon	0.048	
32	28.6161	76.9300	10	Kair		0.1541
33	28.6167	76.9592	10	Mitraon	0.049	0.1344
34	28.6306	76.9478	10	Surakhpur	0.050	0.1604
35	28.6318	76.9607	10	Najafgarh	0.049	0.1440
36	28.5383	76.9818	12	Kangan heri	0.042	0.1859
37	28.8014	77.0240	13	Nangal Thakuran	0.053	0.1404
38	28.8006	76.9821	13	Katewara	0.054	0.1474
39	28.8025	76.9981	13	Bajidpur Thakran	0.054	0.1583
40	28.7903	76.9771	14	Khorjat	0.055	0.1972
41	28.7612	76.9753	14	Chatesar	0.053	0.1890
42	28.7880	77.0151	14	Nangal Thakuran	0.053	0.2003
43	28.7542	77.0071	14	Budhanpur	0.051	0.1563
44	28.7503	77.0244	14	Karala	0.050	0.1827
45	28.7710	77.0166	14	Sultanpur Dabas	0.054	0.1717
46	28.7709	76.9863	14	Salahpur Majra	0.056	0.1828
47	28.7067	76.9908	15	Suda	0.051	0.1463
48	28.7303	77.0231	15	Karala	0.051	0.1677
49	28.7381	77.0014	15	Ladpur	0.052	0.1959
50	28.7192	76.9828	15	Nizampur Rashid	0.051	0.1665
51	28.7261	77.0042	15	Khanjwala	0.051	0.1655
52	28.7061	76.9758	15	Suda	0.049	0.1434
53	28.6953	77.0239	16	Mundka	0.050	0.1446
54	28.6840	77.0076	16	Mundka	0.049	0.1290
55	28.6729	77.0179	16	Mundka	0.048	0.1472
56	28.6526	77.0232	16	Bakarwalan	0.047	0.1537
57	28.6914	76.9766	16	Tikri Kalan	0.050	0.1488
58	28.6805	76.9904	16	Tikri Kalan	0.049	0.1701

Table 9.5: PGA at Engineering Bedrock and Ground Surface based on DBE

59	28.6684	76.9936	16	Hiran Kudna	0.049	0.1425
60	28.6535	76.9840	16	Dhichaon Kalan	0.049	0.1423
61	28.6400	77.0206	10	Bagrola	0.045	0.1446
62	28.6262	77.0200	17	Mohan Garden	0.045	0.1638
63	28.6062	77.0112	17	Najafgarh	0.047	0.1455
64	28.6159	76.9748	17	Najafgarh	0.040	0.1499
65	28.6139	76.9992	17	Najafgarh	0.047	0.1439
66	28.6014	76.9894	17	Roshanpura	0.048	0.1430
67	28.6316	76.9758	17	Dhichaon Kalan	0.049	0.1256
68	28.6345	76.9974	17	Dhichaon Kalan	0.048	0.1664
69	28.5586	76.9811	18	Rewla Khanpur	0.042	0.1554
70	28.5906	76.9796	18	Paprawat	0.046	0.1599
71	28.5927	76.9903	18	Dinarpur	0.046	0.2019
72	28.5801	77.0218	18	Qutubpur	0.046	0.2155
73	28.5782	76.9773	18	Paprawat	0.046	0.1666
74	28.5678	77.0104	18	Chhawla	0.046	0.1783
75	28.5694	76.9967	18	Chhawla	0.045	0.1600
76	28.5534	77.0019	18	Chhawla	0.046	0.2177
77	28.8608	77.0566	20	Lampur	0.058	0.2169
78	28.8692	77.0555	20	Lampur	0.054	0.2095
79	28.8683	77.0944	20	Narela	0.056	0.1969
80	28.8521	77.0675	20	Lampur	0.056	0.1891
81	28.8147	77.0711	21	Sanoth	0.053	0.1937
82	28.8315	77.0723	21	Bankner	0.054	0.1848
83	28.7946	77.0299	22	Bawana	0.056	0.1782
84	28.7998	77.0729	22	Holambi Khurd	0.052	0.1664
85	28.7800	77.0300	22	Sultanpur Dabas	0.055	0.1706
86	28.7732	77.0526	22	Barwala	0.053	0.1637
87	28.7842	77.0670	22	Khera Khurd	0.052	0.1623
88	28.7619	77.0375	22	Sultanpur Dabas	0.054	0.1686
89	28.7601	77.0653	22	Barwala	0.049	0.1564
90	28.7371	77.0386	23	Karala	0.052	0.1927
91	28.7439	77.0517	23	Karala	0.052	0.1760
92	28.7378	77.0714	23	Pansali	0.050	0.1979
93	28.7200	77.0383	23	Mohammadpur Majar	0.050	0.1898
94	28.7257	77.0563	23	Karala	0.050	0.1958
95	28.7200	77.0711	23	Rohini Sec-23	0.049	0.1408
96	28.7106	77.0489	23	Mubarakpur Dabas	0.050	0.1751
97	28.6988	77.0438	24	Kirari Suleman Nagar	0.047	0.1297
98	28.6558	77.0401	24	Ranhola Shafipur	0.047	0.1644
99	28.6828	77.0297	24	Mundka	0.045	0.1410
100	28.5550	77.0394	26	Dwarka Sec-25	0.045	0.1410
100	28.5946	77.0352	26	Dwarka Sec-13	0.041	0.1696
101	28.5940	77.0543	20	Dwarka Sec-15	0.043	0.1738
102	28.5939	77.0711	26	Dwarka Sec-5	0.042	0.1738
103	28.5730	77.0528	26	Dwarka Sec-19	0.041	0.1533
104	28.5814	77.0737	26	Pappan Kalan	0.041	0.1393
105	28.5597	77.0262	26	Dwarka Sec-24	0.041	0.1595
108	28.5498	77.0540	26	Dwarka Sec-24 Dwarka Sec-26	0.042	0.1328
						0.1479
108	28.5550	77.0675	26	Dwarka Sec-21	0.041	
109	28.5378	77.0517	27	Dwarka Sec-27	0.040	0.1503
110	28.8658	77.0967	28	Mamurpur	0.053	0.2551
111	28.8544	77.1225	28	Mamurpur	0.053	0.2203
112	28.8544	77.1018	28	Mamurpur	0.054	0.1851
113	28.8655	77.1113	28	Mamurpur	0.055	0.2177
114	28.8261	77.1069	29	Narela	0.052	0.2022
115	28.8147	77.0856	29	Bhorgarh	0.052	0.1931
116	28.8431	77.0881	29	Narela	0.054	0.1870
117	28.8173	77.0976	29	Rajpur Kalan	0.051	0.1542
118	28.8327	77.0921	29	Bhorgarh	0.053	0.1951
119	28.8336	77.1169	29	Tikri Khurd	0.048	0.2187
120	28.8053	77.0972	29	Holambi Kalan	0.048	0.2179
121	28.8172	77.1165	29	Shahpur Garhi	0.051	0.1624

122	28.7884	77.0819	30	Naya Bansh	0.051	0.1550
122	28.7500	77.0765	30	Pehladpur Banger	0.050	0.1498
123	28.7932	77.0975	30	Holambi Khurd	0.051	0.1717
124	28.7958	77.1052	30	Holambi Khurd	0.051	0.1746
125	28.7731	77.0923	30	Khera Khurd	0.051	0.1740
120	28.7806	77.1125	30	Khera Khurd	0.051	0.1983
128	28.7556	77.0921	30	Pehladpur Banger	0.050	0.1558
129	28.7561	77.1131	30	Sirsapur village	0.049	0.1660
130	28.7244	77.0867	31	Rohini Sec-25	0.049	0.1493
131	28.7283	77.1187	31	Rohini Sec-12	0.047	0.1941
132	28.7161	77.0957	31	Rithala	0.046	0.1411
133	28.7098	77.1119	31	Rohini Sec-6, Blk-F	0.046	0.2011
134	28.7464	77.1042	31	Shiv Vihar	0.050	0.1473
135	28.7079	77.0798	31	Sultanpuri	0.048	0.1589
136	28.7016	77.0904	31	Mangolpuri Blk-Y	0.046	0.1595
137	28.6969	77.0779	32	Sultanpuri	0.045	0.1608
				Pushpanjali Enclave,		
138	28.6970	77.1136	32	Rohini	0.044	0.1517
139	28.6508	77.0857	32	Gurunanak Nagar	0.043	0.1307
140	28.6583	77.1042	32	Khayala	0.043	0.1787
141	28.6800	77.0742	32	Nangloi Jat	0.045	0.1976
141	28.6881	77.0956	32	Mangolpuri	0.044	0.1835
142	20.0001	77.0550	52	Sunder Aptt, Sunder	0.044	0.1855
143	28 6661	77 0017	32	Vihar	0.014	0 1772
143	28.6661	77.0917	32		0.044	0.1772
1.4.4	20 0070	77 4000	22	Jwala Heri, Paschim	0.042	0.1016
144	28.6670	77.1023	32	Vihar	0.043	0.1816
145	28.6439	77.1083	33	Park, Near Tagor Garden	0.042	0.1284
146	28.6306	77.1069	33	Tihar Village	0.041	0.1316
147	28.6367	77.1225	33	Subhash Nagar, Blk-10	0.042	0.1207
148	28.8436	77.1304	38	Singhola	0.052	0.2014
149	28.8283	77.1450	38	Hamidpur	0.051	0.1530
150	28.8423	77.1704	38	Tajpur Kalan	0.050	0.1871
151	28.8269	77.1296	38	Khanpur	0.051	0.1559
152	28.8135	77.1429	38	Bankoli	0.050	0.1944
153	28.8194	77.1551	38	Hamidpur	0.050	0.1675
154	28.8277	77.1702	38	Bakhtawarpur	0.049	0.1985
155	28.8031	77.1313	38	Alipur	0.051	0.1815
156	28.8072	77.1663	38	Bakhtawarpur	0.049	0.1496
157	28.8108	77.1564	38	Bankoli	0.049	0.1785
158	28.8180	77.1744	38	Bakhtawarpur	0.049	0.1651
159	28.7890	77.1301	39	Alipur	0.050	0.1840
160	28.7973	77.1495	39	Alipur	0.049	0.1484
161	28.7938	77.1663	39	Mukhmelpur	0.045	0.1639
161	28.7958	77.1454	39	Budhpur, Bijapur	0.043	0.1694
163	28.7796	77.1686	39	Near Ibrahampur	0.048	0.1708
164	28.7745	77.1335	39	Khera Ghari	0.049	0.1753
165	28.7726	77.1501	39	Kadipur	0.048	0.1739
166	28.7634	77.1722	39	Nathupura	0.047	0.1747
167	28.7621	77.1524	39	Near Swaroopnagar	0.048	0.1509
168	28.7563	77.1364	39	Rana Park, Sirsapur	0.048	0.1597
				Swaroopnagar, New		
169	28.7535	77.1654	39	Colony	0.047	0.1451
170	28.7881	77.1552	39	Mukhmelpur	0.049	0.1502
171	28.7688	77.1625	39	Kadipur	0.048	0.1473
172	28.7429	77.1526	40	Sanjay Gandhi Transport Nagar Blk AG	0.045	0.1245
			-	Rohini Sec-18, Blk A,		
173	28.7393	77.1358	40	Pkt8	0.045	0.1438
175	28.7364	77.1646	40	Bhalsawa	0.043	0.1438
					0.044	
175	28.7286	77.1493	40	Haiderpur		0.1691
176	28.7096	77.1280	40	Rohini Sec-14	0.044	0.1442
				North Pitampura, Pkt-		1

Sahipur, Near Shalimar 178 28.7194 77.1601 40 Bagh 0.043 179 28.7191 77.1747 40 Aadarsh Nagar 0.043 179 28.7191 77.1747 40 Aadarsh Nagar 0.043 180 28.7041 77.1551 40 Pocket 0.043 181 28.7056 77.1744 40 B 0.042 182 28.6928 77.1249 41 Saraswati Vihar 0.044 183 28.6981 77.1419 41 Pocket-KD 0.043 184 28.6953 77.1631 41 ashok Vihar, Ph-I, Blk-E 0.042 185 28.6597 77.1302 41 Near Raja Garden 0.042 186 28.6833 77.1417 41 East Punjabi Bagh 0.042 187 28.6703 77.1417 41 East Punjabi Bagh 0.043 188 28.6708 77.1581 41 Area 0.043	0.1423 0.1801 0.1428 0.1869 0.1742 0.1669 0.1288 0.1235 0.1304 0.1618 0.1377
179 28.7191 77.1747 40 Aadarsh Nagar 0.043 180 28.7041 77.1551 40 Pocket 0.043 181 28.7056 77.1744 40 B 0.042 182 28.6928 77.1249 41 Saraswati Vihar 0.044 183 28.6981 77.1419 41 Pocket-KD 0.043 184 28.6953 77.1631 41 ashok Vihar, Ph-I, Blk-E 0.042 185 28.6937 77.1302 41 Near Raja Garden 0.042 186 28.6703 77.1417 41 East Punjabi Bagh 0.042 188 28.6708 77.1581 41 Area 0.043	0.1801 0.1428 0.1869 0.1742 0.1669 0.1288 0.1235 0.1204 0.1618
180 28.7041 77.1551 40 Pocket 0.043 181 28.7056 77.1744 40 B 0.042 182 28.6928 77.1249 41 Saraswati Vihar 0.044 182 28.6928 77.1249 41 Saraswati Vihar 0.044 183 28.6981 77.1419 41 Pocket-KD 0.043 184 28.6953 77.1631 41 ashok Vihar, Ph-I, Blk-E 0.042 185 28.6597 77.1302 41 Near Raja Garden 0.042 186 28.6833 77.1450 41 Sakurpur Village 0.043 187 28.6703 77.1417 41 East Punjabi Bagh 0.042 188 28.6708 77.1581 41 Area 0.043	0.1869 0.1742 0.1669 0.1288 0.1235 0.1304 0.1618
181 28.7056 77.1744 40 B 0.042 182 28.6928 77.1249 41 Saraswati Vihar 0.044 182 28.6928 77.1249 41 Saraswati Vihar 0.044 183 28.6981 77.1419 41 Pocket-KD 0.043 184 28.6953 77.1631 41 ashok Vihar, Ph-I, Blk-E 0.042 185 28.6597 77.1302 41 Near Raja Garden 0.042 186 28.6833 77.1450 41 Sakurpur Village 0.043 187 28.6703 77.1417 41 East Punjabi Bagh 0.042 188 28.6708 77.1581 41 Area 0.043	0.1869 0.1742 0.1669 0.1288 0.1235 0.1304 0.1618
181 28.7056 77.1744 40 B 0.042 182 28.6928 77.1249 41 Saraswati Vihar 0.044 183 28.6928 77.1249 41 Saraswati Vihar 0.044 183 28.6981 77.1419 41 Pocket-KD 0.043 184 28.6953 77.1631 41 ashok Vihar, Ph-I, Blk-E 0.042 185 28.6597 77.1302 41 Near Raja Garden 0.042 186 28.6833 77.1450 41 Sakurpur Village 0.043 187 28.6703 77.1417 41 East Punjabi Bagh 0.042 188 28.6708 77.1581 41 Area 0.043	0.1742 0.1669 0.1288 0.1235 0.1304 0.1618
182 28.6928 77.1249 41 Saraswati Vihar 0.044 183 28.6981 77.1419 41 South Pitampura, Blk 0.043 184 28.6953 77.1631 41 ashok Vihar, Ph-I, Blk-E 0.042 185 28.6597 77.1302 41 Near Raja Garden 0.042 186 28.6833 77.1450 41 Sakurpur Village 0.043 187 28.6703 77.1417 41 East Punjabi Bagh 0.042 188 28.6708 77.1581 41 Area 0.043	0.1742 0.1669 0.1288 0.1235 0.1304 0.1618
183 28.6981 77.1419 41 Pocket-KD 0.043 184 28.6953 77.1631 41 ashok Vihar, Ph-I, Blk-E 0.042 185 28.6597 77.1302 41 Near Raja Garden 0.042 186 28.6833 77.1450 41 Sakurpur Village 0.043 187 28.6703 77.1417 41 East Punjabi Bagh 0.042 188 28.6708 77.1581 41 Area 0.043	0.1669 0.1288 0.1235 0.1304 0.1618
183 28.6981 77.1419 41 Pocket-KD 0.043 184 28.6953 77.1631 41 ashok Vihar, Ph-I, Blk-E 0.042 185 28.6597 77.1302 41 Near Raja Garden 0.042 186 28.6833 77.1450 41 Sakurpur Village 0.043 187 28.6703 77.1417 41 East Punjabi Bagh 0.042 188 28.6708 77.1581 41 Area 0.043	0.1288 0.1235 0.1304 0.1618
184 28.6953 77.1631 41 ashok Vihar, Ph-I, Blk-E 0.042 185 28.6597 77.1302 41 Near Raja Garden 0.042 186 28.6833 77.1450 41 Sakurpur Village 0.043 187 28.6703 77.1417 41 East Punjabi Bagh 0.042 188 28.6708 77.1581 41 Area 0.043	0.1288 0.1235 0.1304 0.1618
185 28.6597 77.1302 41 Near Raja Garden 0.042 186 28.6833 77.1450 41 Sakurpur Village 0.043 187 28.6703 77.1417 41 East Punjabi Bagh 0.042 188 28.6708 77.1581 41 Area 0.043	0.1235 0.1304 0.1618
186 28.6833 77.1450 41 Sakurpur Village 0.043 187 28.6703 77.1417 41 East Punjabi Bagh 0.042 188 28.6708 77.1581 41 Area 0.043	0.1304 0.1618
187 28.6703 77.1417 41 East Punjabi Bagh 0.042 188 28.6708 77.1581 41 Area 0.043	0.1618
188 28.6708 77.1581 41 Karampura Block, Indl 0.043	
188 28.6708 77.1581 41 Area 0.043	0.1377
	0.1577
CISF Rd, Mahipalpur	
189 28.5431 77.1327 44 Extn 0.039	0.1445
190 28.4972 77.1325 45 Ghitorni Village 0.038	0.1437
190 28.4964 77.1622 45 Sultanpur Village 0.037	0.1449
Saink Nivas MES,	
192 28.4858 77.1331 45 Ghitorni 0.038	0.1269
HK Farm House, near	
193 28.4839 77.1628 45 Godaipur 0.037	0.1454
194 28.4706 77.1631 45 Jaunapur 0.037	0.1321
Farm house, Mandi	
195 28.4440 77.1464 46 Village 0.036	0.1549
KH No.66/6, Mandi	
196 28.4416 77.1347 46 Village 0.036	0.1608
SEPAL Farm Dera, Mandi	0.1205
197 28.4400 77.1636 46 Rd, Mandi 0.036	0.1395
198 28.8441 77.1848 48 MCD School, Palla 0.047 199 28.8455 77.2001 48 Palla 0.046	0.1626
199 28.8455 77.2001 48 Palla 0.046 200 28.8294 77.1788 48 Bakhtawarpur 0.046	0.1576 0.1745
200 28.82.94 77.1768 48 Database 0.045 201 28.8308 77.1986 48 School Jhangla 0.045	0.1550
201 20.000 77.1300 40 School Mangal 0.045 202 28.8175 77.2134 48 Palla Police Post 0.044	0.1682
203 28.8167 77.1994 48 Near Jal Board Palla 0.044	0.1635
204 28.7978 77.1807 49 Hiranki Village 0.045	0.1613
205 28.7708 77.1875 49 Uttarakhand Coloney 0.043	0.1821
Shank No.1, Burari	
206 28.7639 77.2153 49 village 0.043	0.1808
Near Shank 22, Hiranki	
207 28.7948 77.1911 49 Village 0.044	0.1701
208 28.7946 77.1998 49 Tedi Daulatpur 0.044	0.1569
Resid. area, Hiranki, Nr	
209 28.7810 77.1838 49 Ibrahampur 0.041	0.1851
210 28.7757 77.1992 49 Silampur Majra 0.044	0.1638
211 28.7604 77.1976 49 Burari 0.043	0.1680
211 28.7604 77.1976 49 Buran 0.043 212 28.7445 77.1943 50 Sant Nagar 0.046	0.1680
212 28.7445 77.1945 50 Salit Nagal 0.046 213 28.7144 77.1874 50 Nr Model Town 0.045	0.2343
213 28.7144 77.1874 30 Ni Model Town 0.043 Radio Coloney, Nr Dhaka Radio Coloney, Nr Dhaka Recent Action (Section Sectin (Section (Section (Sectin (Section (Section (Sectin (Se	0.2373
214 28.7135 77.2047 50 Village 0.044	0.1329
Near Jahangirpuri Blk-	
215 28.7319 77.1810 50 JJC 0.046	0.1502
216 28.7336 77.2064 50 Jharoda Dairy Coloney 0.045	0.1455
217 28.7331 77.2185 50 Nr Milan Vihar, Burari 0.044	0.1599
Nirankari Ground, nr	
218 28.7260 77.1939 50 Jharoda Majra 0.045	0.2086
219 28.7031 77.1966 50 Model Town 0.044	0.1445
220 28.7059 77.2210 50 Timarpur 0.044	0.1159
221 28.6793 77.2205 51 Civil Lines 0.041	0.1623
Khalsa College, Nr Univ	
222 28.6962 77.2104 51 campus 0.042	0.1665

223	28.6893	77.1978	51	CC Colony	0.042	0.1659
224	28.6896	77.1834	51	Near Satyavati Colony	0.042	0.1429
225	28.6478	77.2109	51	Azad Market	0.041	0.1714
				Shiv Temp, Fakira Bagh,		
226	28.6788	77.1878	51	Shastri Nagar	0.042	0.1743
227	28.6850	77.2033	51	Roopnagar Blk-6	0.042	0.1770
228	28.6680	77.2208	51	Civil Lines, Nr Tis Hazari	0.041	0.1519
229	28.5208	77.1910	54	Lado Sarai	0.039	0.1572
230	28.5340	77.1936	54	Govt Nursery, Adhichini	0.039	0.1601
				Lal bahadur Vidyapith,		
231	28.5413	77.1829	54	Katwariasarai	0.040	0.1373
232	28.5056	77.2058	54	Neb Sarai, Mehrauli	0.039	0.1098
233	28.5478	77.1937	54	Rose Garden, Haus Khas	0.040	0.1497
				Begampur,Malviya		
234	28.5388	77.2088	54	Nagar	0.040	0.1655
235	28.5387	77.2244	54	Shek Sarai,PhI	0.040	0.1693
236	28.5288	77.2066	54	Hauz Rani Saket	0.039	0.1542
				Kusum Nursery Vasant		
237	28.5080	77.1739	54	Kunj	0.039	0.1716
238	28.5161	77.2119	54	Saket-Bdarpur Rd	0.039	0.1527
				Sainik Farm, Nr Sangam		
239	28.5001	77.2220	54	Vihar	0.039	0.1645
240	28.4986	77.1792	55	Near Chhatarpur Mandir	0.039	0.1548
241	28.4978	77.1942	55	DDA, Maidan Garhi	0.039	0.1256
				10 Farm, DLF,		
242	28.4828	77.1806	55	Chhatarpur	0.039	0.1509
243	28.4856	77.1971	55	Rajpur Khurd	0.038	0.0000
244	28.4717	77.1922	55	Saharpur Extn, ND	0.038	0.1333
245	28.4567	77.2075	55	Forest, Asola Village	0.039	0.1535
246	28.7176	77.2510	58	PT School, Wazirabad	0.044	0.1795
				Ramp No.3, Near		
247	28.7325	77.2325	58	Jagatpur Bund	0.044	0.1934
248	28.7450	77.2559	58	Burari Village	0.045	0.1782
				Pantan Bridge,		
249	28.7079	77.2364	58	Wazirabad	0.044	0.1706
				Govt School, Karwal		
250	28.7338	77.2657	58	Nagar	0.044	0.1488
				Near Priya Convent Sch,		
251	28.7188	77.2664	58	Dayalpur	0.043	0.1763
252	28.7039	77.2554	58	Garai Mandu Village	0.043	0.1969
253	28.6857	77.2350	59	New Usmanpur Village	0.043	0.1897
254	28.6587	77.2401	59	MG Park, Lal Quila	0.042	0.1602
255	28.6924	77.2548	59	Pusta-4, Usmanpur	0.042	0.1679
				Opp DMRC off, Shatri		
256	28.6769	77.2471	59	Park	0.042	0.1885
257	28.6753	77.2692	59	Silampur	0.042	0.1754
258	28.6668	77.2503	59	Shastri Park	0.042	0.1382
259	28.6589	77.2692	59	SK School, Geeta Colony	0.041	0.1603
260	28.7304	77.2814	65	Kali Mandir, Shiv Vihar	0.043	0.1752
261	28.7073	77.3232	65	Harsh vihar	0.042	0.1735
262	28.7149	77.2815	65	Chamanpark, Johripur	0.043	0.1647
263	28.7029	77.3076	65	Nand Nagari	0.042	0.1408
264	28.7044	77.2769	65	Gokulpuri colony	0.043	0.1992
265	28.7029	77.2962	65	East Gokulpur	0.042	0.1510
266	28.689500	77.289333	66	Near Jyoti colony	0.042	0.1368
267	28.692472	77.312861	66	Nand Nagari, Blk-E4	0.043	0.1444
268	28.677722	77.298417	66	Mansarovar Park	0.041	0.1330
269	28.656000	77.292278	66	Arjun Nagar	0.041	0.1263
270	28.665333	77.305583	66	Jhilmil Coloney	0.042	0.1374
271	28.653694	77.315667	66	Anand Vihar, Blk-C	0.042	0.1504
272	28.6192	77.2865	67	Pandav Nagar, Blk-A	0.039	0.1281
273	28.6242	77.3001	67	Vinod Nagar West, Blk-D	0.041	0.1253
-	28.6092	77.3028	67	Mayur Vihar, Ph-I, Pkt 2	0.040	0.1500

				Durga park Coly, near		
275	28.6111	77.3225	67	Kundali	0.040	0.1250
				Park, near Appolo Hosp.,		
276	28.5398	77.2831	69	Jasola	0.039	0.1380
				near Badarpur Thermal		
277	28.5234	77.3083	69	Plant, Khadar	0.039	0.1364
				DDA Park, Sarita Viahar,		
278	28.5321	77.2956	69	Blk-D	0.038	0.1481
279	28.5412	77.3089	69	Kalindikunj, Jaitpur Road	0.039	0.1500
280	28.5322	77.3161	69	DDA park, JJ Colony	0.038	0.1504
201	28 5062	77 2017	60	Govt School, near	0.027	0 1226
281	28.5062	77.3017	69	NTPC,Badarpur	0.037	0.1336
282	28.502500	77.314083	69	Near Irrigation Dept, Hari Nagar	0.038	0.1723
283	28.6281	77.3253	72	Near Gaziur, Blk-D	0.041	0.1319
205	20.0201	77.5255	, _	Gharoli Dairy Farm, Blk-	0.011	0.1515
284	28.6121	77.3348	72	A	0.040	0.1303
285	28.6032	77.3308	72	Near Kundli, Blk-A1	0.040	0.1326
286	28.5147	77.3417	73	Jaitpur Extn	0.038	0.1370
287	28.5253	77.3313	73	Near Police post, Jaitpur	0.038	0.1377
288	28.8746	77.0795	20	Safiabad	0.054	0.1947
289	28.8757	77.1114	28	Kundli	0.056	0.1831
290	28.8125	77.0875	29	Holambi kalan	0.050	0.1894
291	28.8300	77.1229	29	Tikri Khurd	0.050	0.1410
292	28.7222	77.1056	31	DCE, Rithala	0.045	0.1447
293	28.8183	77.1458	38	Bankoli	0.049	0.1714
294	28.7499	77.1763	39	Bhalsawa Dairy	0.045	0.1684
295	28.7917	77.1597	39	Mukhmelpur	0.047	0.1698
296	28.8417	77.2125	48	Jangola	0.049	0.1639
297	28.8056	77.1917	49	Fatehpur Jat	0.045	0.1716
298	28.8583	77.2417	49	Sankrot	0.049	0.1566
299	28.7083	77.2167	50	Indira Vihar	0.044	0.1420
300	28.7427	77.2053	50	Salarpur	0.043	0.1842
301	28.6917	77.2292	51	Majnu Ka Tila	0.044	0.0889
302	28.7450	77.2442	58	Libaspur	0.045	0.1506
303	28.6072	76.8844	3	Mandhela Kalan	0.050	0.1189
304	28.5828	76.9311	11	Khera Dabas	0.049	0.1446
305	28.5324	76.9461	12	Shikarpur	0.045	0.1480
306	28.7872	77.0164	14	Bawana, Khanjawala	0.049	0.2033
307	28.6264	77.0197	17	Mohan Garden	0.047	0.1273
308	28.7072	77.0322	23	Madanpur Dabas	0.049	0.1698
309 310	28.8714 28.8042	77.0833 77.1094	28 29	Narela Holambi Kalan	0.056	0.1710 0.1952
310	28.8042	77.0892	31	Rohini Sec-25	0.051	0.1952
311	28.6250	77.0903	33	Janakpuri Blk-B3B	0.040	0.1322
313	28.5117	77.1083	35	Rajokri village	0.039	0.1230
313	28.8180	77.1744	33	Bakhtawarpur	0.048	0.1693
517	20.0100	,,,	50	Swaroopnagar, New	0.0-0	0.1000
315	28.7535	77.1653	39	Colony	0.047	0.1591
316	28.6828	77.1615	41	Keshavpuram	0.043	0.0964
317	28.4717	77.1475	45	Akoi Farm, Jaunapur	0.040	0.1230
		-	-	Ridge, Near Univ		
318	28.6857	77.2159	51	Campus	0.041	0.1064
319	28.6645	77.2074	51	Azadpur Market	0.041	0.1483
320	28.6144	77.1763	52	Budha Jayanti Park	0.041	0.1137
				Begampur, Malviya		
321	28.5386	77.2092	54	Nagar	0.040	0.1322
322	28.5252	77.2215	54	Pushpa Vihar, Sec-1	0.040	0.1334
323	28.4723	77.1860	55	Chandan Hulla	0.039	0.1187
324	28.7250	77.2510	58	PTS Wazirabad	0.044	0.1641
				Jawaharlal Nehru		
325	28.5811	77.2313	61	Stadium	0.040	0.0951
326	28.6029	77.2855	67	Nangal	0.040	0.1169

327	28.5325	77.3167	69	JJ Colony, Sarita Vihar	0.039	0.1387
				Jawaharlal Nehru		
328	28.5811	77.2330	61	Stadium	0.040	0.1074
329	28.5889	77.2596	61	Sarai Kale Khan	0.037	0.1315
330	28.5889	77.2596	61	Sarai Kale Khan	0.037	0.1598
				Rajiv Gandhi Smriti Van,		
331	28.5963	77.2578	61	Nr Zoo	0.038	0.1254
				Rajiv Gandhi Smriti Van,		
332	28.5997	77.2569	61	Nr Zoo	0.038	0.1275
				Rajiv Gandhi Smriti Van,		
333	28.5976	77.2575	61	Nr Zoo	0.041	0.1592
334	28.6783	77.1583	41	Tri Nagar	0.042	0.1655
335	28.6699	77.2704	59	Seelampur	0.039	0.1418
336	28.6783	77.1583	41	Tri Nagar	0.042	0.1537
337	28.5524	77.2758	68	Sukhdev Vihar	0.036	0.1388
338	28.5233	77.2279	62	Pushpa Vihar	0.037	0.1714
				Paschimshila Park,		
339	28.5431	77.2113	54	South Blk-S	0.037	0.1298
340	28.6783	77.1583	41	Tri Nagar	0.042	0.1695
341	28.7177	77.1103	31	Rohini Sec-5, Pkt-6	0.045	0.2182
342	28.5248	77.2137	54	Saket	0.037	0.1510
	=			Udyog Nagar, Nr		
343	28.6813	77.0971	32	Paschim Vihar	0.044	0.1953
344	28.6407	77.2320	60	Ramlila Ground	0.039	0.1781
345	28.4724	77.1860	55	Chandan Hulla	0.039	0.1417
346	28.4704	77.2013	55	Saharpur Extn, ND	0.036	0.1563
340	28.4458	77.1866	56	Fatehpur Beri	0.039	0.1121
347	28.4438	77.2006	56	Bhati Mines	0.039	0.1446
348	28.6830	77.1622		Keshavpuram	0.043	0.1391
			41	+		
350	28.6029	77.2855	67	Nangal	0.040	0.1065
351	28.6361	77.2986	67	Indraprastha Extn	0.040	0.1357
352	28.6768	77.3123	66	Dilshad Garden, Blk R	0.039	0.1242
353	28.6222	77.3388	72	NearMayur Vihar Ph-III	0.040	0.1382
354	28.7342	77.0891	31	Rohini Sec-25	0.046	0.1671
355	28.5089	77.1083	35	Rajokri village	0.042	0.1144
356	28.6379	77.0761	33	Vikaspuri Blk-C	0.045	0.1323
357	28.5877	77.0474	26	Dwarka Sec-11	0.044	0.1262
358	28.5933	77.0492	26	East of Dwarka Sec-12	0.044	0.1456
359	28.6736	77.2981	66	Shahdara	0.039	0.1247
360	28.5926	77.0815	34	Nr Palam Village	0.043	0.1196
361	28.6175	77.0480	25	Sainik Nagar	0.046	0.1301
362	28.5963	77.0788	34	Dwarka Sec-1	0.043	0.1188
363	28.6699	77.1389	41	West Punjabi Bagh	0.045	0.1454
				Rajiv Gandhi Smriti Van,		
364	28.5963	77.2578	61	Nr Zoo	0.037	0.1293
365	28.8197	77.0612	21	Sanoth	0.055	0.1791
366	28.6222	77.2042	52	Nr MP's Club, Rakabganj	0.038	0.1230
367	28.5300	77.0890	35	Samalka, Nr Kapashera	0.041	0.1230
				Intl Airport Authority, Nr		
368	28.5449	77.1198	35	Mahipalpur	0.041	0.1201
				Intl Airport Authority, Nr		
369	28.5477	77.1250	35	Mahipalpur	0.041	0.1252
370	28.5861	77.0551	26	Dwarka Sec-10	0.044	0.1308
-			-	Sadar Bazar (Delhi		
371	28.5958	77.1200	34	Cantt)	0.043	0.1122
372	28.7119	77.1601	40	Shalimar Bagh, Pkt-BD	0.042	0.1410
373	28.8528	77.0889	29	Narela	0.056	0.1751
374	28.6250	76.9231	3	Kair	0.051	0.1409
375	28.5917	76.9250	4	Jafarpur Kalan	0.050	0.1309
375	28.6417	77.1647	4	West Patel Nagar	0.039	0.1303
	28.6611	77.1647	42	New Motinagar, Blk-17	0.039	0.1373
277		//.1400	41	INCW IVIOLIIIAgal, DIK-1/	0.041	0.1115
377	20.0011			Chaukhandi, nr Hind		

379	28.6636	77.1433	41	New Motinagar, Blk-B	0.045	0.1262
200	20 0010	77 4 6 0 2	44	Lawrence Rd Coloney,	0.044	0.1304
380	28.6919	77.1602	41	Blk-C-7	0.041	0.1384
381	28.6736	77.1931	51	Gulabi Bagh	0.040	0.1538
382	28.6797	77.1573	41	Omkar Nagar	0.041	0.1368
202	20 6 475	77 4 707	50	Prasad Nagar, Nr E.	0.020	0.4257
383	28.6475	77.1797	52	Patel nagar	0.039	0.1357
384	28.5827	77.0579	26	Dwarka Sec-10	0.044	0.1263
385	28.6506	77.3042	66	Karkarduma	0.038	0.1295
386	28.6484	77.3046	67	Karkarduma	0.038	0.1288
387	28.5807	77.2924	68	Trans Yamuna, nr Chilla	0.037	0.1245
388	28.6417	77.2522	60	Rajghat	0.038	0.1430
389	28.6681	77.2564	59	Shastri Park, BLK-A	0.039	0.1293
				Close to Tuglakabad	0.005	0.4400
390	28.5150	77.2722	62	Village	0.035	0.1182
391	28.5686	77.2436	61	Lajpatnagar, part-II	0.036	0.1195
392	28.5681	77.2189	53	South Ex Part-II	0.037	0.1318
393	28.5444	77.2583	62	Kalkaji, Blk-D	0.036	0.1217
394	28.5722	77.1708	43	RK Puram, Sec-8	0.038	0.1160
395	28.5781	77.1625	43	Anand Niketan, Blk-D	0.038	0.1293
				Mata Sundari Rly		
396	28.6222	77.2467	60	Coloney	0.037	0.1476
20-	20 0000			Satyawati Coloney, Blk-	0.040	0.4044
397	28.6903	77.1778	51	A, Pkt-A	0.040	0.1311
398	28.6556	77.1917	51	Karol Bagh, Blk-D, Pkt52	0.039	0.1401
399	28.6083	77.2403	60	Bapa Nagar	0.037	0.1281
400	28.6111	77.2264	60	Vigyan Bhawan	0.037	0.1406
				Govt Quarters, Nr Gole	0.000	
401	28.6367	77.2064	52	Market	0.038	0.1224
402	28.6417	77.1508	42	Pusa Institute	0.040	0.1404
403	28.5651	77.0783	34	IGI nr Pappan Kalan	0.043	0.1266
10.1	20 6200	77 0075	60	West of F.S.Kotla	0.020	0.4.455
404	28.6389	77.2375	60	stadium	0.038	0.1455
405	20,0200	77 2000	50	Bangla Saheb	0.030	0 1 2 1 7
405 406	28.6260 28.6735	77.2099 77.2916	52 66	Gurudwara Makki Sarai	0.038 0.039	0.1217 0.1249
406	28.0735	77.2916	00		0.039	0.1249
407	20 (021	77 1000	50	Chanakyapuri, Nr JLN	0.027	0.1162
407	28.6021 28.5523	77.1928 77.2140	52 53	Memorial Museum Siri Fort Sports Complex	0.037 0.036	0.1162 0.1251
408		77.2140				
409 410	28.5616 28.5677	77.2242	53 61	Aayurvugyan Nagar Andrews Ganj	0.037	0.1303
410	28.3077	11.2212	01		0.037	0.1235
411	28.6390	77.1316	42	Mansarover Garden, Blk-WZ	0.040	0.1303
411 412	28.5255	77.2120	54	Saket	0.040	0.1303
412	28.5255	77.0639	26	Dwarka Sec-10	0.036	0.1213
413	28.5862	77.0362	26	Bawana	0.044	0.1348
414			66	Dilshad Garden, Blk-C	0.039	0.1886
	28.6805	77.3130			0.039	
416	28.7100	77.2835	65	Bhagirath Vihar Bragati Maidan	0.039	0.1237
417	28.6217	77.2440	60	Pragati Maidan Mandali Extr	0.037	0.1339
418	28.7011	77.3078	65	Mandoli Extn		0.1266
419	28.5417	77.1833	54	Qutub Indl Area	0.037	0.1177
420	20 5222	77.3029	<u> </u>	Madanpur Khadar	0.025	0 1129
420	28.5332		69 50	Village Majlis Park	0.035 0.041	0.1128
421 422	28.7135 28.5646	77.1774	50 61	Laipat Nagar, Part-IV		0.1359
422	20.3040	77.2477	61	Rohinin Sec-13, nr	0.037	0.1115
423	28.7238	77 1253	40	Vikrant Apartment	0.043	0 1/62
	28.7238	77.1353 77.0769				0.1463
424 425	28.5621 28.6779	77.2274	34 59	IGI, nr Dwarka Sec-21 Civil Lines	0.043 0.039	0.1253 0.1350
426	28.5730	77.0777	34	Dwarka Sec-8	0.043	0.1183
427	28.5867	77.0933	24	Sadh Nagar, Palam	0.043	0.1294
427	28.5867	77.1125	34 31	coloney Rohini Sec-25	0.043	0.1294
			ור		0.040	0.1010

429	28.7268	77.1136	31	Rohini Sec-25	0.048	0.1632
430	28.6444	77.2269	60	Kamla Market	0.038	0.1372
				Mahaveer Enclave-II, nr		
431	28.6006	77.0931	33	Kailashpuri west	0.043	0.1244
432	28.6150	77.0889	33	Janakpuri Blk C-3	0.043	0.1318
433	28.6153	77.0886	33	Janakpuri Blk C-3	0.043	0.1258
434	28.6708	77.2903	66	Teli Bara	0.039	0.0971
435	28.6683	77.2762	66	Seelampur	0.039	0.1292
436	28.7012	77.2888	65	South of Gokulpur	0.039	0.1287
				Nr Kardam Farm,		
437	28.7164	77.2863	65	Johripur	0.039	0.1308
438	28.6764	77.2889	66	Naveen Shahdara	0.039	0.1328
439	28.6764	77.2889	66	Naveen Shahdara	0.039	0.1292
440	28.6699	77.2704	59	Seelampur	0.039	0.1188
441	28.5979	77.0510	26	Dwarka Sec-4	0.045	0.1399
442	28.6806	77.1561	41	Lawrence Rd Indl Area	0.041	0.1437
				Andha Mughal, Nr		
443	28.6708	77.1972	51	Gulabi Bagh	0.040	0.1543
				Patparganj, nr		
444	28.6117	77.3103	67	Trilokpuri-I	0.037	0.1162
445	28.7042	77.3131	65	Mandoli	0.039	0.1275
446	28.7931	77.0417	22	Bawana	0.055	0.1662
447	28.7019	77.1667	40	Wazirpur Indl Area	0.041	0.1373
448	28.5355	77.1626	44	JNU	0.041	0.0898
449	28.4508	77.2094	55	Asola	0.038	0.0922

भारत सरकार GOVERNMENT OF INDIA

FAX : 91-11-24360336 91-11-24360779 PHONE :

GRAM : MAHASAGAR

पृथ्वी विज्ञान मन्त्रालय MINISTRY OF EARTH SCIENCES

महासागर भवन, ब्लाक–12, सी.जी.ओ. काम्पलैक्स, लोदी रोड, 'Mahasagar Bhavan' Block-12, C.G.O. Complex, Lodhi Road,

संख्या No.___ नई दिल्ली-110003

MoES/Seismo/2(01)/2007

New Delhi-110003_

Dated: 28th Nov., 2007

Sub: Constitution of Advisory and Monitoring Committee on Microzonation study of Delhi region.

OFFICE MEMORANDUM

Earthquake Risk Evaluation Centre (EREC), IMD is in process of preparing microzonation maps of Delhi on 1:10,000 scale. In order to oversee this, Ministry of Earth Sciences has constituted an advisory & monitoring committee with following composition and terms of reference.

(A)Composition

- Prof. A S Arya, National Seismic Advisor, Ministry of Home Affairs, New Delhi
- Prof. D. K. Paul, Department of Earthquake Engineering, Indian Institute of Technology, Roorkee- 247 667
- Prof. S. K. Nath, Department of Geology & Geophysics, Indian Institute of Technology, Kharagpur- 721 302
- Dr. T. G. Sitharam, Department of Civil Engineering, Indian Institute of Science Bangalore Bangalore-560012
- Dr. Prabhash Pandey, Director, Geological Survey of India, Northern Region, Vasundhara, GSI Complex, Sector-E, Aliganj, Lucknow- 226 024.

Chairman

Member

Member

Member

Member

Contd. P-2/-

- Dr. A. K. Bhatnagar, Additional Director General (Sesimology), India Meteorological Department Mausam Bhawan Lodhi Road, New Delhi- 110 003.
- 7. Programme Officer, Seismology, MoES

Member

Member

Convener

 Dr. A. K. Shukla, Director, EREC India Meteorological Department Mausam Bhawan Lodhi Road, New Delhi- 110 003.

B-Terms of reference

- The Committee will guide the activities and monitor the progress of the project on regular basis, preferably every 45 days and suggest the mid term corrections required, if any.
- The Committee may recommend the short-term studies required to be taken up for completion of the task.
- The Committee may co-opt any expert(s) required for any specific issue.
- · The Committee will guide/help in preparation of the final report.

C-Tenure

The tenure of the Committee will be co-terminus with the completion of microzonation study and release of final report.

TA & DA to experts and non-official members of the Committee will be met by EREC. Also, members of the committee will be entitled for an honorarium of Rs.500/- per day of the meeting. \land

This issues with approval of Secretary, MoES.

M

Vandana Chaudhary Scientist-C Seismology Division

To,

Chairman and all members of the Committee

Contd. P-3/-

Copy Forwarded for information:

- 1. Director General, India Meteorological Department, Mausam Bhawan, Lodhi Road, New Delhi- 110 003
- 2. Sr. PPS to Secretary, Ministry of Earth Science, Mahasagar Bhawan, CGO Complex, New Delhi
- 3. PS to JS (A), Ministry of Earth Science, Mahasagar Bhawan, CGO Complex, New Delhi

4. Office Copy

Cuolana

/andana Chaudhary Scientist-C Seismology Division

Further, show as not skelp to be "concents" among the vanues expects and its air to be protocome to according a complex territoric means its the "concent" one Therefore, to concentre does there and the rescent of the rescent means (1) a representation of the protocome of the rescent of the rescen

A BRIEF ON MONITORING AND REVIEW PROCESS OF SEISMIC HAZARD MICROZONATION PROJECT ON 1: 10K SCALE

Seismic Hazard Microzonation requires multidisciplinary data collocation, generation, integration of the different types of information (geologic, seismotectonic, Geotechnical, Geophysical, Earthquake), application of different mathematical tools (statistics, probability, and models) and decision making which requires a project structure and implementation process that assure proper quality data generation, selection of appropriate models, appropriate analytical approach, and integration keeping in view of (i) proper and full incorporation of uncertainties, (ii) data generation practices in vogue (iii) inclusion of the range of diverse techniques, interpretations (iii) consideration of site- specific knowledge and data sets, (iv) complete documentation of the process and results, (v) proper peer review.

Further, there is not likely to be "consensus" among the various experts and no single interpretation concerning a complex earth-sciences issue is the "correct" one. Therefore, to address a difficult technical issue and to reach near consensus results (i) a representation of the legitimate range of technically supportable experts among the entire informed technical community, throughout the process of microzonation (ii) assurance of good quality data generation under the guidance of technical experts, regular supervision during the process of data generation, application of available guidelines, codes etc. (iii) Selection of appropriate techniques and models (iv) regular review by technical experts, are required.

Earthquake Risk Evaluation Center (EREC) of India Meteorological Department, (which has recently been merged with Center of Seismology)Ministry of Earth Science is a multidisciplinary Center. Scientists from the Center have completed Seismic Hazard Microzonation (SHM) of NCT Delhi in 1:50000 scale and participated in collaborative projects of SHM studies, undertaken for other cities of the country by different organizations. Scientists of the Center have also undergone long and short term training courses related to hazard analysis, Geological/ Geophysical/Seismological field data collection practices, laboratory investigation practices and operational aspects. Further, to make use of expertise available in the country, better representation, continuous monitoring and guidance of the project "Seismic Hazard Microzonation of NCT Delhi on 1:10000 scale" Ministry of Earth Sciences had constituted a multidisciplinary Advisory and Monitoring Committee vide MoES/Seismo/2(01)/2007 dated 28.11.2007, under the Chairmanship of Prof. A.S.Arya, Former Seismic Advisor, Government of India, presently Hon'ble Member Bihar Disaster Management Authority and experts of different disciplines as members of the committee (Annexure-1). For continuous supervision and guidance, Advisory and Monitoring Committee met eight times during the course of study. To interact with legitimate range of technically supportable experts, several interactive meetings and
workshops were also organized during the course of study and formulation of report. Report has been reviewed by the members of the committee and their suggestions have appropriately been incorporated. A brief on review and monitoring process of individual components and entire project of Seismic Hazard Microzonation is as follows.

1. Probabilistic Seismic Hazard Analysis at engineering bedrock

The important components of Probabilistic Seismic Hazard Analysis (PSHA) are seismic source identification, selection of ground motion models, seismicity parameters, etc. There are inevitable uncertainties in selecting these parameters due to large uncertainties in all the geosciences data and in their modeling, lack of proper understanding of the mechanisms that cause earthquakes, and of the processes that govern how an earthquake's energy propagates from its origin beneath the earth to various points near and far on the surface. This problem is aggravated in regions where large earthquakes are very uncommon and multiple model interpretations are often possible. The complexity, importance and diversity of Judgments regarding any one of these issues vary between study location, range of the study (site-specific vs. regional), and other factors. Therefore, a proper representation of the legitimate range of technically supportable experts are essential during the process of selection of data set, different models and process to be adopted. Keeping this in mind, in the present Seismic Hazard Microzonation study, the PSHA has been carried out in collaboration with an expert institution, IIT Roorkee. To further address these issues several interactive meetings of Seismologist, Geologist, and Earthquake engineers were held at IIT Roorkee and most appropriate, consensus parameters were selected. Seismotectonic Modeling has been carried out using published Seismotectonic atlas by Geological Survey of India (GSI), an expert organization. All innovative techniques have been adopted to address the uncertainties such as Logic tree approach, Monte Carlo approach etc. The results of PSHA have been peer reviewed by way of presentation in Seminar/workshop, publication in research Journals and during the process of evaluation of Ph.D. thesis, as it also form part of the thesis one of IIT, Roorkee student.

2: Interactive session and a lecture of renowned Geologist Prof. S.K.Tondan, the then Pro-Vice Chancellor, University of Delhi held in May 2007 before undertaking geological mapping.

In carrying forward the microzonation to a higher level of precision on 1:10000 scale, it was required to generated base map on the same scale and geologically re-survey the area on new base map (scale 1:10,000). Project specific base map on 1:10000 scale was generated by Survey of India (SoI), representing Delhi in 75 toposheets. The geological mapping of a large urban complex with high scale resolution of 1:10,000 was a challenging and time consuming task. Mapping on such a scale has never been attempted for any of the Indian cities. Moreover, capturing ground geological data due to high density urbanization in Delhi was rendering further difficulty. In view of this an interactive session and a lecture of renowned Geologist Prof. S.K.Tondan, the then Pro-Vice Chancellor, University of Delhi, was arranged in the first week of May 2007 to assess the geological parameters required for Microzonation and innovative

techniques to be used to complete the task in a minimum time frame. In this session about 20 Geologist of GSI Lucknow/Faridabad and officials from CGWB, SOI and EREC have participated. Subsequently, a working group consisting of scientists from GSI, Lucknow & Faridabad, Central Ground Water Board (CGWB) Delhi, SOI Delhi and EREC was constituted. The Geological Mapping was carried out in collaboration with Geological Survey of India, a nodal agency of Government of India by constituting two dedicated groups of geologist, one at GSI Faridabad and other at EREC. To minimize the hindering effect of the urban masking in geological data capturing, the field work was supplemented with (i) aerial photo based on old series photography of 1976 generation available with SOI and high resolution remote sensing data of recent origin (ii) extensive probing with exploratory drill holes. The Geological Mapping was completed in 2011.

3: Review Meeting held on 15.11.2007

This meeting was attended by 20 experts from varied disciplines such as Seismology, Geology, Geophysics, Earthquake Engineering, Geotechnical Engineering, and reviewed ongoing work, methodology being adopted and recommended field and laboratory tests to be undertaken through proposed outsourcing at 550 sites.

4: Meetings of Advisory and Monitoring Committee

During the process of Seismic Hazard Microzonation of NCT Delhi and formulation of the report eight meetings of Advisory and Monitoring Committee were held under the Chairmanship of Prof. A.S.Arya. In these meetings committee was continuously monitoring the progress of work, process of data generation, methodology being adopted to generate different components of SHM, and providing technical guidance. Committee was also reviewing the results generated by EREC at different stages. A brief of minutes of these meetings are as follows.

4.1: First Meeting of Advisory and Monitory Committee held on 23rd January 2008

Geological mapping on 1:10000 scale was initiated in collaboration with GSI. In this meeting committee reviewed the progress. In the mean time, it was decided to identify sites for proposed geotechnical and geophysical investigations on the basis of available geological map on 1:25000 scale, which may be reviewed on completion of geological mapping on 1:10000 scale. A subcommittee was also constituted to work out criteria for identification of suitable sites, requisite number of sites required for investigations and resource organizations for undertaking some of the components of work.

4.2: Sub Committee meeting held on 6th October 2008

Subcommittee formulated criteria for the selection of sites. On the basis of available geological map on 1:25000 scale, 567 sites for geotechnical and geophysical investigations were tentatively

identified on the map. These identified sites were roughly in a grid of 1.5 X 1.5 km. Resource institutions for measurement of Shear wave velocity using MASW were also identified.

4.3: Second Meeting of Advisory and Monitory Committee held on 24th October 2008

The Second meeting of the Advisory and Monitoring Committee was held on 24th October 2008 and reviewed the recommendations of subcommittee and sites identified for geotechnical geophysical investigations. Progress of work was also reviewed.

4.4: Third meeting of Advisory and Monitoring Committee was held on 19th June 2009.

In this meeting status of outsourced geotechnical, geophysical investigations were reviewed. The observations made by the team of EREC during their field visits, particularly regarding SPT and collection of UDS were discussed and representatives of outsourced agency were suitably advised to strictly follow specified codes/guidelines of the field and laboratory investigations and all precautions should be taken for SPT measurement and collection of Disturbed & Undisturbed Soil samples, their indexing, storing and transporting to labs, as suggested by the team of EREC.

The list of 567 tentative sites for drilling bore holes and geotechnical investigations presented by EREC was further reviewed and decided that, in uniform geology where not many variations are expected in sub surface geology, grid spacing may be increased to 3 X 3 km instead of 1.5 X 1.5 Km" and the sites may be reduced to about 500. On study of the subsurface variations, on the basis of the result of these 500 selected sites, further course of actions will be decided. A criterion for identification of twenty five sites for CHT/DHT has also been worked out. The need of proper supervision during the field investigations and geological logging in the supervision of a geologist was emphasized.

4.5: Fourth meeting of the Advisory and Monitoring Committee was held on 4th December 2009.

In this meeting status of geotechnical and geophysical investigations was reviewed. The issues of deployment of hydraulic drilling machines particularly for Undisturbed Soil Sampling, and difficulty expressed by outsourced agency in arranging large number of such machines was discussed. It was noted that the disturbances may not only be created by the process of collection of soil samples, but disturbances are also added at all further stages of processing, such as during the process of withdrawing sampler from the borehole, packing of sampler, transporting sampler, storing samples, removal of samples from samplers during the process of lab test and preparation of samples during loading on machines for different tests.

In view of this and as BIS code does not specify type of machines to be used, it was decided that however, Hydraulic machines are best suited for the UDS collection at field, but on taking precautions at different stages as listed above even mechanical machines may be used. Representative of outsourced agency present during the meeting were advised to strictly follow these precautions during the operation.

4.6: Field visit of the members of Advisory and Monitoring Committee

In the afternoon of 4th December 2011, Committee members visited field investigations site at Dilshad Garden, where both Hydraulic and Non hydraulic (CAYLEX) Rotary machine were put on operation. Different types of samplers including Piston Samplers to be used during field operation were also demonstrated. Process of SPT and UDS sampling by both the machines were also demonstrated. It was advised that, on taking all the precautions discussed during the meeting both types of machines may be used. Further, Committee members again emphasized that Proper supervision should be made by EREC during field investigations. Outsourced agency was also requested that geological logging should be carried out under the supervision of geologist.

4.7: Fifth meeting of the Advisory and Monitoring Committee held on 13th September 2010

In this meeting Dr. A.K.Shukla, EREC made a presentation on the status of the Seismic Microzonation project particularly on ongoing Geotechnical investigations, which were going in a very slow pace. Dr. Shukla also presented on studies so far carried out by EREC, on the basis of laboratory test results made available by outsourced agencies for review by the committee.

Prof. Sharma, IIT Roorkee made also made a presentation on updated Probabilistic Seismic Hazard Analysis (PSHA) and generated maps. The Salient features of the new study and subsequent generated maps presented by Prof. Sharma are as follows:

- 1. On the basis of seismotectonic maps and Seismicity four source zone have been considered for the study viz-a-viz (i) Himalayan Source Zone falling within 350 km radius of Delhi (ii) Delhi-Haridwar Ridge, source zone (iii) Moradabad Fault Zone and (iv) Rajasthan Great Boundary Fault zone.
- 2. New generation attenuation relation has been used for evaluating PGA value at the engineering bed rock level having shear wave velocity about 760 m/second.
- The 'b' values for the above source zone have been worked out to be (i) Himalayan source Zone0.59±0.03 (ii) Delhi-Haridwar Ridge, source zone 0.42±0.012 (iii) Moradabad Fault Zone and 0.42±0.012 (iv) Rajasthan Great Boundary Fault zone 0.42±0.012.
- 4. The maximum credible earthquake for these zone have been worked out are (i) Himalayan Source Zone is 7.2±0.37 (ii) Delhi-Haridwar Ridge, source zone is

6.42 \pm 0.47 (iii) Moradabad Fault Zone is 6.42 \pm 0.47 (iv) Rajasthan Great Boundary Fault zone is 6.42 \pm 0.47

- 5. The mean PGA values estimated for different probability of exceedance and return periods. The PGA values for return period (i) for 475 years varies from 0.09 to 0.16 (ii) for 2500 years varies from 0.18 to 0.31
- 6. The strong ground motion has been estimated for different periods.

Representative of M/S RITES presented the status of the ongoing Geotechnical study and highlighted the difficulty being experienced in drilling of deep bore hole due to lose strata, collapsing of bore hole which is taking enormous time. An alternate methodology was proposed for deep drilling to reduce the time frame of drilling. They also explained reasons in delay of execution of work and assured that RITES is making all efforts to complete the work.

Representative of M/S Fugro also made a presentation on CHT/DHT project and results. The shear wave velocity shown at ridge observatory sites was quite low. He informed that this point was already raised by EREC and therefore all the data has been reanalyzed and the low velocity is basically due to highly weathered rock. After elaborate discussions following decisions were taken

- (1) EREC should intensify analysis efforts and on the basis of data available/ being made available, efforts should be made to present the results of at least about 800 sq.km area by the end of December 2010.
- (2) The PGA values particularly for 2500 years return period which varies from 0.18 to 0.31 seems to be very high. Committee requested Prof. Sharma to look in to.
- (3) Noting the practical difficulty in deep drilling by conventional method and as PGA values are being made available at the depth level having shear wave velocity 760 m/s, it may not necessary to drill up to bed rock at all proposed sites and therefore, quantum of deep drilling up to the bed rock level having more than 120m may be reduced from 25 drill sites to only to 15 drill sites.

4.8: Sixth Meeting of the Advisory and Monitoring Committee held in second half on 21st November 2011

In the first half on 21st November 20111, a workshop was organized. Prof.A.S.Arya, Chairman, placed his appreciation for completing Seismic Microzonation of NCT Delhi for Northern Delhi and holding workshop/ interactive meet to discuss the products of Seismic Microzonation with user agencies and scientific experts. He expressed his desire that, as recommended in the workshop, EREC may generate a report on completed study and circulate among the users and concern government agencies to initiate modality of implementing the products of Seismic Microzonation in different process of earthquake mitigation strategy.

Status of data geotechnical, geophysical data generation and analysis was reviewed on the basis of presentation made by Dr.A.K.Shukla, and Prof. M.L.Sharma, IIT Roorkee.

In view of the slow process of ongoing geotechnical investigation and possibility of not completing investigations at all proposed sites, committee decided that some of the borehole data collected during the first phase study of 1:50000 scale, from different organizations may be used after re- scrutiny to fill up the gap area.

4.9: Seventh meeting of the Advisory and Monitoring Committee was held on 5th February 2011

Prof.A.S.Arya, Chairman, appreciated the systematic approach being adopted to ensure generation of good quality controlled validated and cross checked data with different approaches for Seismic Microzonation of NCT Delhi on 1:10000 scale, being undertaken by EREC in guidance of the committee.

Dr. A.K.Shukla, Head, EREC presented various product maps generated on 1:10,000 scale, pertaining to identification of engineering bedrock through linearity and modeling of soil column up to engineering bedrock; Site characterization; ground response study and evaluation of amplification factor, Peak Ground Acceleration(PGA); and Liquefaction susceptibility for different depth ranges. The Major issues discussed in the meeting were as follows:

- 1. Estimation of shear wave velocity through linearity with depth to the Vs of 760m/s was accepted by the committee.
- 2. Response calculated using Dyne Q, as shown in the meeting, was discussed elaborately and approved by the committee members.
- 3. Committee had prolonged discussion on the way of interpretation of "Amplification/Amplitude/Amplification factor due to site as well as due to building structure". Chairman suggested for careful use of these terminologies with proper explanation.
- 4. Discussion was also held on application of free surface correction and decided that a factor of 2 is to be used for all the sites and results obtained through PSHA should be divided by 2 to bring the result at engineering bedrock level.

4.10: Eight Meeting of extended Advisory Committee held on 6th July 2012,

In order to make use of the Seismic Hazard Microzonation products as per objectives of the study, in design of building codes and land use planning, a suitable strategy need to be worked out. Formulation of strategy for implementation of Seismic Microzonation products, for design of building codes and land use planning, need intensive discussion and may take time. In view of this, to initiate the process of such discussions, Secretary, MoES was of the view that, the

process of such discussions may be initiated on the basis of available results even of tentative in nature, so that immediately on completion of study results may be put on use.

In view of the above, a brief report was generated on the basis of available results, consisting of methodology adopted for generating different products, data used, integrated maps of NCT Delhi for different themes, and a set of large scale maps for sheet no 39. An implementation strategy for formulation of building codes, based on present practice (using present BIS code) and land use planning was also drafted and included in the report.

Report was circulated among the members of Advisory and Monitoring Committee, practicing engineers, planners, and officials of MoUD, DDA, CPWD, and Disaster Management of Delhi Government for their comments and was also invited for this extended group of Advisory and Monitoring committee meeting to discuss following issues.

- (i) Review of Seismic Microzonation results/products before finalization and printing.
- (ii) Review/drafting implementation strategy for incorporating results of seismic microzonation products in building codes and land use planning of NCT Delhi.
- (ii) In view that outsourced agency M/S RITES have stooped execution of geotechnical data generation, formulate strategy for data generation of the remaining part of NCT Delhi to complete the study

Some of the important discussion and suggestions made were as follows:

(i) In the present study Maximum magnitude in Himalayan region has been estimated as Mw 7.2 ± .35 considered for deriving Hazard parameters. In view of the scientific prediction of M 8.0, in seismic gap in Himalayan region, some of the members were of the view that maximum magnitude is under estimated. The following explanation given by Dr. M.L.Sharma, the project coordinator of this work component was discussed and accepted.

" In the present study seismotectonic modeling has been carried out considering the sources within 350 km of from Delhi, which cover only part of Himalayan region. Thus the estimated maximum magnitude is not the representative of whole Himalayan region. The maximum magnitude reported in the considered area is Chamoli earthquake of Magnitude 6.8 occurred in 1999. Moreover, results of degradation study shows that earthquakes of higher magnitude occurring beyond considered distance of 350 km may not affect on PGA at Delhi. The frequency contents of such a large distance earthquakes may only affect very high rise structures. The present study is valid only for common buildings up to 20 to 30 stories, as response spectra being provided up to 3 second only".

(ii) Uncertainty in field operation, particularly collection of SPT 'N' values, which are used in deriving shear wave velocities at different depths and is one of the important parameter,

generally being done by untrained staff. However, special care has been taken in this project by strict monitoring and supervision.

- (iii) There was consensus about the procedures followed in conducting seismic microzonation studies for NCT Delhi and members were of the view that these have been discussed many times at different forum and there is no doubt and/or ambiguity in the processes adopted and described in the report.
- (iv) The average shear wave velocity (Vs30) based on CHT results obtained in Ridge area near Seimo observatory Ridge is found to be only 300m/s and based on this Ridge was shown as class 'D'. Obviously, it was surprise for a geologist. However from the fact that (i) the result was repeatedly confirmed from the outsourced agency M/S Fugro, (ii) qualified rock could not be traced even further drilling of several meters, after encountering the rock in that area, (iii) high shear wave velocity at some other parts of exposed ridge, it seems that the exposed ridge may be segmented and quality of rock exposed in ridge area may be different in different segments.
- (vii) In view of the outsourced agency stopped execution of contract and some area remains without investigation of proposed number of sites, but noting the uniform geological variation, similarity with areas where analysis has already completed, and absence of special features, which may possibly alter the subsurface features, the data available seems to yield satisfactorily results within the accuracy of engineering requirement, the results presented on extrapolation are seems acceptable. Further, as suggested in earlier meetings old data available with EREC may be re-scrutinized and suitable data may be incorporated for early completion of study. He further suggested that maps may be presented preferably on district wise maps or Sheet wise.
- (viii) There should be two types of report one purely Scientific and other from Engineering and planning point of view, which would give complete guidelines.
- (ix) In general members particularly practicing engineers appreciated inclusion of suggested strategy for implementation of Seismic Hazard Microzonation products in land use planning and design of building codes in the report, which seems sufficient to work in this direction. Elaborate discussion took place on how to make use of different products of seismic microznation such as PGA, spectral acceleration, response spectra, peak frequency, liquefaction susceptibility and vertical distribution of PGA etc.

On request of Prof. A.S.Arya, a committee consisting of engineers was constituted to review the chapter of "suggested strategy for implementation of Seismic Hazard Microzonation products in land use planning and design of building codes"

4.11: Meeting of the subgroup committee constituted for further discussion and finalization of "Suggested implication strategy for using Seismic Hazard Microzonation Products" was held on 1st Aug 2012, under the chairmanship of Prof. A.S.Arya.

Members were of the view that it is highly scientific study and large numbers of site specific parameters have been derived, which may have different types of implications in building construction practices. It is good initiative that a chapter has been devoted for actual applications of different parameters derived from the study. Bureau of Indian Standards (BIS) is the national body responsible for drafting building codes. The suggested implication strategy included in the report is presently sufficient to initiate further discussions in BIS committee's to appropriately accommodate Seismic Hazard Microzonation products in BIS code. A few specific comments were made to be incorporated in the report such as identify (a) Areas which will behave as more than zone IV, (b) Areas which will have construction design for less than the effects of Zone IV, and (c) Areas for which one should not go for construction in normal course.

5: A brief on Report of workshop on Seismic Hazard Microzonation of NCT Delhi on 1:10000 scale, held on 21st November 2011, at India International Center, New Delhi

An interactive meet/workshop was organized by Earthquake Risk Evaluation Center (EREC), India Meteorological Department (IMD), on 21/11/2011, at India International Center, (IIC), New Delhi to discuss the results of Seismic Hazard Microzonation of NCT Delhi on 1:10000 scale among user agencies, engineers and scientific experts, before being finalized and published. In this workshop scientist and Engineers from different institutions and organizations such as IIT's, Universities, Central Public Work Department (CPWD), Delhi Development Authority (DDA), and Municipal Corporation of Delhi (MCD) etc had participated. The workshop was inaugurated by Prof. A.S.Arya, former National Seismic Advisor of Government of India, presently and Member of Bihar State Disaster Management Authority (BSDMA). Other members of the Advisory and Monitoring Committee of Seismic Microzonation of NCT Delhi were also participated in this workshop. The technical session of the workshop was chaired by Prof. S.K.Nath, IIT Khargpur and Co-chaired by Er. G.R. Siromani, Chief Engineer, Delhi Development Authority (DDA). Two presentations were made in this workshop and followed by panel discussion.

The first presentation was made by Prof. M.L.Sharma, Department of Earthquake Engineering, Indian Institute of Technology, Roorkee on Probabilistic Seismic Hazard Analysis for NCT Delhi. In his presentation Prof. Sharma elaborated detailed methodology adopted for probabilistic seismic hazard, data used, and earthquake source considered for the analysis. He also presented different steps of the study such as generation of earthquake catalog, treatment on this catalog, magnitude homogenization, evaluation of completeness of data, use of different predictive attenuation relation and process of map generation. The maps generated on the basis of analysis and presented by Prof. Sharma are as follows.

- 1. Probabilistic Seismic Hazard Map of different probably of exceedance at engineering bedrock level
- 2. Uniform Hazard Response Spectra (UHRS) for different probably of exceedance at engineering bedrock level at several sites of NCT Delhi.

The second presentation was made by Dr. A.K.Shukla, Head, EREC, on ground response analysis. He informed that project specific base and Geological maps on 1:10000 scale in which Delhi has been represented in 75 sheets form the basic requirement of the study and were generated in collaboration with expert organizations Survey of India (SoI) and Geological Survey of India (GSI) respectively. In his presentations Dr. Shukla, covered different steps involved in the study, such as free surface correction, generation of engineering compatible site specific earthquake time histories at engineering bed rock based on UHRS generated from the first part of the study, delineation of engineering bed rock, Shear wave velocity evaluation through different techniques such as MASW & SPT 'N' values, site classification, site response study using equivalent -Linear analysis technique & parameters required for the analysis, generation of site specific Response spectra, and Liquefaction study etc. He also made presentation on criteria used for selection of sites for geotechnical/geophysical and other investigations. He informed that about 500 sites geotechnical investigation, at 25 sites CHT/DHT and about 100 sites MASW investigations are being carried out. Presently based on investigations completed so far, Seismic Hazard analysis for an area of about 700 sq km covering North Delhi has been carried out. On the basis of completed study following maps of North Delhi were generated and presented in the workshop.

- 1. Documentation map showing locations of different type of Geotechnical/Geophysical investigations planned at NCT Delhi.
- 2. Geological Geomorphological map of NCT Delhi
- 3. Peak Ground Acceleration (PGA) map at bed rock after necessary correction on the map generated and presented in the first presentation
- 4. Engineering bedrock depth map for north Delhi.
- 5. Amplification map for north Delhi.
- 6. Peak frequency map for north Delhi.
- 7. Peak Ground Acceleration (PGA) map at Surface for north Delhi.
- 8. Map embedded with Acceleration response spectra generated at 25 sites spread over NCT Delhi, where in-situ shear wave velocities have been evaluated using CHT techniques.
- 9. Map of north Delhi embedded with average acceleration response spectra for each toposheets consisting of about 25sq km area
- 10. Spectral Acceleration map of 10% probability of exceedance in 50 Years for different time periods (0.1S, 0.3S, 0.5 S, 1.0Seconds etc corresponds to differ heights of buildings) for north Delhi.

11. Liquefaction potential map for different depth level (0-3m, 3-6m,6-9m,9-12m bgl) based on Factor of safety for north Delhi.

These maps were also displayed in the conference hall for easy visualization and discussion.

Participants were very excited to see the products of Seismic Microzonation study on such a large scale, providing site specific seismic earthquake loading parameters. Participants were trying to understand & discussed efficacy of each and every site specific parameters, as most of the participants involved in building design and construction practices were presently convergent to use of uniform Seismic loading parameters for entire area as provided in building code.

After presentations and discussion on outcome of the study and generated maps panel discussion took place. After elaborate discussion, participants were of the view that seismic microzonation products which have been presented in the workshop are very important and need to be incorporated in the BIS code. However, as presently uniform Seismic Loading parameters are being used for building design, therefore a methodology need to be formulated to make use of site specific parameters.

Following specific comments and points were raised by Prof Arya and other participants.

- (i) From the study it seems that however, PGA is maximum at the surface, but major increase in PGA starts from depth of 9-12 meters bgl and above. In view of the fact, as presently buildings are constructed 3 levels below the ground surface, with foundation nearly about 9-12 m beneath the ground, design engineers may therefore think of making use of PGA values at the level of foundation depth, which may substantially reduced the seismic loading parameter required for designing of the buildings.
- (ii) In view of the above, he expressed the need of generation of soil columns and corresponding amplification and response spectra, so that application may become simpler for the Engineers.
- (iii) Considering the seismic microzonation products as standard and requirement for better design, a strategy need to be worked out for incorporating these results/ products in building codes.
- (iv) It has also been felt that field practices of geotechnical investigations need to be improved and extensive check list for field supervision need to be developed and incorporated in respective codes.

5.1: Recommendations of the Workshop:

1. Based on completed study, Earthquake Risk Evaluation Center, India Meteorological Department may finalize the report of North Delhi and supplement the report with proposed methodology of implementation. The report may be provided to different stake holders such as Delhi Government, Ministry of Urban Development, and Bureau of Indian Standard to initiate further discussion to formulate methodology for incorporating results in building codes and strategy of implementation.

- 2. Ministry of Urban Development may be requested to constitute a national level committee consisting of expert from different stake holders to discuss the products of the report and formulate strategy of implementation of seismic microzonation products in national level.
- 3. The study of remaining part of Delhi may be completed on priority.
- 4. Seismic Microzonation Study need to be taken up for cities lying in high hazard seismic zones.

.....

LIST OF PARTICIPANTS IN MONITORING AND REVIEW PROCESS

OF SEISMIC HAZARD MICROZONATION OF NCT DELHI ON 1:10000 SCALE

S.No.	Name	Organization from
1.	Prof A.S. Arya,	Former Seismic Advisor, Govt. of India, presently Hon'ble Member Bihar State Disaster management Authorty & Chairman Advisory and Monitoring Committee of Seismic Hazard Microzonation of Delhi
2.	S.K.Tondan,	Then Pro-Vice Chancellor, University of Delhi,
3.	AVM(Dr). Ajit Tyagi	Then Director General of Meteorology, India Meteorological Department
4.	Dr. L.S.Rathore	Director General of Meteorology, India Meteorological Department
5.	Prof. D.K.Paul	Former Professor & Dean Department of Earthquake Engineering, IIT, Roorkee and presently Scientist Emetrous, IIT, Roorkee & Chairman, BIS committee. Member, Advisory and Monitoring Committee of SHM of Delhi
6.	Prof. T. G. Sitharamm	Civil Engineering Department, Indian Institute of Science, Bangalore and Member Advisory & Monitoring Committee of SHM of Delhi
7.	Prof. S.K.Nath	Department of Geophysics, IIT Khargpur and Member Advisory & Monitoring Committee of SHM of Delhi
8.	Dr. Prabhas Pandey	Former Additional Director General, GSI, Kolkatta and Member Advisory & Monitoring Committee of Seismic Hazard microzonation of Delhi
9.	Dr.B.K.Bansal	Advisor, Ministy of Earth Sciences and Member Advisory & Monitoring Committee of Seismic Hazard microzonation of Delhi
10.	Shri A.K.Bhatnagar	Former Additional Director General, IMD, and Member Advisory & Monitoring Committee of Seismic Hazard microzonation of Delhi
11.	Prof M.L. Sharma	Department of Earthquake Engineering IIT Rookee, Project Director, PSHA, and Invitee Member Advisory & Monitoring Committee of Seismic Hazard microzonation of Delhi
12.	Er. Mahendra Raj	Architectural Engineering, Head, MRC & Former President of IAstructE
13.	Prof. C.S.Dube	Department Geology, University of Delhi, Invitee

		Advisory & Monitoring Committee of Seismic Hazard microzonation of Delhi
14.	Dr.A.K.Shukla	Head, Earthquake Risk Evaluation Center and Member/Secretary, Advisory & Monitoring Committee of Seismic Hazard microzonation of Delhi
15.	Smt. Binu Manghat	Superintend Surveyor, Survey of India (SOI), New Delhi and Representative of SoI in Advisory & Monitoring Committee of Seismic Hazard microzonation of Delhi
16.	Shri Bed Prakash	Survey Officer, Survey of India (SOI), New Delhi and Representative of SoI in Advisory & Monitoring Committee of Seismic Hazard microzonation of Delhi
17.	Shri M.Kanwar	Representative of CGWB in Advisory & Monitoring Committee of Seismic Hazard microzonation of Delhi
18.	Dr. Y B Kaushik	Scientist-D & officer-in- Charge, CGWB, Jamnagar House, New Delhi.
19.	Dr. Sailesh Kumar Agrawal,	Executive Director, (Building Material and Technology Promotion Council(BMTPC), New Delhi
20.	Dr. A.K.Dhawan	Then Director, Center of Soil and Material Research Station, (CSMRS), New Delhi
21.	Er. G.R. Shiromini	Chief Engineer Delhi Development Authority (DDA), Vikas Sadan New Delhi-23
22.	Shri S.B.Khodankar	Director,(Planning),Master Plan, Delhi Development Authority (DDA), New Delhi
23.	Er O.P.Kumra	Executive Engineer, Delhi Development Authority (DDA), Vikas Sadan New Delhi
24.	Shri H.K.Bharti	Dy. Director, Delhi Development Authority (DDA), New Delhi
25.	Prof. G V Ramanna	Department of Geotechnical Engineering, Indian Institute of Delhi
26.	Prof. Ashok Kumar	Department of Earthquake Engineering, Indian Institute of Delhi (IIT), Roorkee
27.	Dr. Yogendra Singh	Department of Earthquake Engineering, Indian

		Institute of Delhi (IIT), Roorkee
28.	Dr. Jai Prakash Narayan	Department of Earthquake Engineering, Indian Institute of Delhi (IIT), Roorkee
29.	Dr. P.L.Narula	Former Deputy Director General, GSI & ther Visiting Professor, IIT, Rookee
30.	Sh Shoor Bir Singh	Survey of India, R.K. Puram
31.	Er. Satish Kumar Aggarwal	Superintend Engineer Central Public Work Department (CPWD), Nirmaan Bhawan , New Delhi
32.	Er. Surinder Kumar Sharma	Superintendent Engineer, Central Public Work Department (CPWD), Nirmaan Bhawan New Delhi-110011
33.	Er. (Ms.) Lakshmi kumari	Assistant Executive Engineer (AEE) Central Public Work Department (CPWD), Nirmaan Bhawan New Delhi
34.	Er. Nipun Gupta	Assistant Executive Engineer (AEE) Central Public Work Department (CPWD), Nirmaan Bhawan New Delhi
35.	Er. Sudhir Tiwari	Assistant Executive Engineer (AEE) Central Public Work Department (CPWD), Nirmaan Bhawan New Delhi
36.	Er. Dasarath Kumar Panwar	Assistant Executive Engineer (AEE) Central Public Work Department (CPWD), Nirmaan Bhawan New Delhi
37.	Shri Kuldip Sing Gangar	Rev. Secretar, Delhi Disaster Management Authority (DDMA), Delhi
38.	Ms. Sivani Jain	Project Coordinator, Delhi Disaster Management Authority (DDMA),
39.	Ms. Sivani Rana	District Project Officer, Delhi Disaster Management Authority (DDMA), NE Delhi
40.	Shri Rajeev Malhotra	Chief Regional Planner, National Capital Region (NCR), Planning Board
41.	Dr. Priyank Mittal	Superintendent Engineer, WBP
42.	Dr. Manoj Chaudhary	Department of Geology, University of Delhi
43.	Dr. A K Malaviya	Then Director, Geological Survey of India(GSI), Faridabad and Project Director Geological Mapping, Seismic Hazard Microzonation of Delhi
44.	Dr. Kamal Kazim	Then Director Geological Survey of India(GSI), Faridabad and Project Director Geological Mapping, Seismic

		Hazard Microzonation of Delhi
45.	Shri Rajendra Kumar	Senior Geologist
		Member Geological Mapping Group of GSI, for Seismic Hazard Microzonation of Delhi
46.	Shri Hemant Kumar	
40.	Shri Hemant Kumar	Senior Geologist
		Member Geological Mapping Group of GSI, for Seismic Hazard Microzonation of Delhi
47.	Shri Surya Bali Jaiswar	DDGM, IMD
	-	
48.	Dr.K.D.Rao	Director, Central Ground Water Board (CGWB), New Delhi
49.	Dr. G.C.Nayak	Supt. Surveyor,
49.	DI. O.C. Nayak	
		Air and Geospatial Data Center, New Delhi
50.	Dr. P.S.Mishra	Visiting Fellow, (Geology) EREC, India Meteorological Department, New Delhi
		Denn
51.	Dr. Chandan Ghosh	Visiting Fellow, (Geotechnical)
		EREC.India Meteorological Department, New
		Delhi
		Denn
52.	Dr.T.K.Ray	Visiting Fellow (Computer Science),
		EREC, India Meteorological Department, New
		Delhi
53.	Dr. R.S.Dattatrayam,	Scientist F & Head, Seismology
		India Meteorological Department, New Delhi
54.	Dr. Sumit Chopara	Scientist E,
	-	Ministry of Earth Sciences, New Delhi
55.	Dr. LR Meena	Scientist 'F'/DDGM,
001		India Meteorological Department, New Delhi
56.	Sh AK Sharma	Scientist 'F'/DDGM,
		India Meteorological Department, New Delhi
57.	Sh M K Bhatnagar	Scientist 'F'/DDGM,
		India Meteorological Department, New Delhi,
		N.Delhi-
58.	Ms. Vandana Chowdhari	Scientist,
		Ministry of Earth Sciences
59.	Dr. Sumer Chopra	Scientist E,
		Ministry of Earth Sciences
60.	Sh. S.K.Jain	DDGM, IMD
61.	Dr Babita	Scientist,
		Ministry of Earth Sciences
62.	Dr Gupta	Scientist,
		Ministry of Earth Sciences

63.	Dr Sanjay Prajapati	Scientist, Ministry of Earth Sciences
64.	Sh. S.K.Jain	DDGM,
04.	SII. S.K.Jalli	India Meteorological Department, New Delhi
65.	Sh. PR Baidya	Scientist 'E',
	5	Seismology Division, India Meteorological
		Department, New Delhi
66.	Sh. H P Shukla,	Director,
00.	Sil. III Shukia,	Seismology Division, India Meteorological
7		Department, New Delhi
67.	Sh. G L Gautam,	Director,
		Seismology Division, India Meteorological
		Department, New Delhi
68.	Sh Dal Singh	Scientist 'E'
		Seismology Division, India Meteorological
		Department, New Delhi
69.	Sh. Ravi Kant Singh,	Director,
	, , , , , , , , , , , , , , , , , , ,	EREC, India Meteorological Department, New
		Delhi
70.	Dr. AP Pandey,	Meteorologist-I,
70.	DI. AI Tandey,	
		EREC, India Meteorological Department, New
1		Delhi
71.	Sh.HS Mandal,	Meteorologist-I,
		EREC, India Meteorological Department, New
		Delhi
72.	Sh.JS Jaryal,	Assistant Meteorologist -I,
		EREC, India Meteorological Department, New
		Delhi
73.	Dr.H .S.Sisodia,	Assistant Meteorologist GrII
		EREC, India Meteorological Department, New
		Delhi
74.	Sh.BR Sharma,	Scientific Assistant
77.		EREC, India Meteorological Department, New
		Delhi
75.	Sh D S Maana	Scientific Assistant
75.	Sh.B.S Meena,	
		EREC, India Meteorological Department, New
		• •
		Delhi,
76.	Sh.Vishal Rana	Delhi , Research Associate,
76.	Sh.Vishal Rana	Delhi,
76.	Sh.Vishal Rana	Delhi , Research Associate,
76.	Sh.Vishal Rana Dr.(Mrs) Rajwant	Delhi , Research Associate, EREC, India Meteorological Department, New
		Delhi , Research Associate, EREC, India Meteorological Department, New Delhi Research Associate,
		Delhi ,Research Associate,EREC, India Meteorological Department, NewDelhiResearch Associate,EREC, India Meteorological Department, New
77.	Dr.(Mrs) Rajwant	Delhi ,Research Associate,EREC, India Meteorological Department, NewDelhiResearch Associate,EREC, India Meteorological Department, NewDelhi
		Delhi ,Research Associate,EREC, India Meteorological Department, NewDelhiResearch Associate,EREC, India Meteorological Department, New

79.	Sh J. K. Medhankar	Research Associate,
		EREC, India Meteorological Department, New
		Delhi
80.	Sh.Raju Sharma	Junior Research Fellow
		EREC, India Meteorological Department, New
		Delhi
81.	Ms. Sarita Tiwari	Junior Research Fellow
		EREC, India Meteorological Department, New
		Delhi
82.	Mr. Ganju	FUGRO, Geotech, New Delhi
83.	Ms. Jyoti Sharma	FUGRO, Geotech, New Delhi
84.	Dr. B R Singh	Director
		RITES Ltd, New Delhi
85.	Sh S.K Asthana	RITES Ltd, New Delhi
86.	Sh. S Madan	RITES Ltd New Delhi
87.	Sh. C S Khokhar	RITES Ltd New Delhi
88.	Mr. Kumar	RITES Ltd New Delhi
89.	Sh. P C Devoli	RITES Ltd New Delhi